1. By whom was the absolute value of charge on electron determined?

Answer: R.A. Millikan

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->By whom was the absolute value of charge on electron determined?....
QA->Which energy of the electron at absolute zero is called?....
QA->Whomeasured the charge of an electron at first?....
QA->By whom was Electron first identified?....
QA->Ministers in a State get salaries; by whom is it as determined?....
MCQ-> Read the following passage and solve the questions based on it.In an. Engineering College, five students from five different cities were elected as Secretaries by the students to perform different student activities. Each student studies in a different branch of engineering. Additionally, the following information is provided:(i) Abhishek does not stay in the Aravalli hostel where the student from Nagpur stays. (ii) The student, whose name is not Abhishek and does not study in Metallurgy, stays in Satpura hostel. He is the only student among the five to stay at Satpura hostel (iii) Hardeep neither belongs to Jodhpur, nor does he study Mechanical Engineering. (iv) The student-in-charge of Cultural activity stays in the Aravalli hostel where Civil Engineering student does not stay. (v) Sanjoy and thistudent, who studies Metallurgy, both stay in the same hostel. (vi) The student who belongs to Allahabad does not stay with the student-in-charge of the Sports activity staying at Aravalli hostel. (vii) Sanjoy is not the student-in-charge of the Cultural activity. (viii) Ravi, the student-in-charge of Mess activity, stays at Satpura hostel. (ix) The student from Patna and the student, who studies Mechanical Engineering, both stay at Aravalli hostel. They are the only two among the five students to stay at this hostel. (x) The student, who stays at Satpura hostel, studies Computer Science. (xi) Hemant, who does not belong to Kochi, studies Chemical Engineering. He is not the General Secretary of the Student Body. (xii) Sanjoy does not belong to Allahabad. (xiii) The student from Kochi and the student-in-charge of Placement activity, both stay at the Vindhya hostel.Which of the following statement(s) is (are) incorrect? I. The Chemical Engineering student and the student-in-charge of Cultural activity, both stay in the same hostel. II. The student in-charge of Placement activity is studying Metallurgy. III. The student who belongs to Nagpur is the student-in-charge of Sports activity. IV. Ravi belongs to Jodhpur....
MCQ-> The English alphabet is divided into five groups. Each group starts with the vowel and the consonants immediately following that vowel and the consonants immediately following that vowel are included in that group. Thus, the letters A, B, C, D will be in the first group, the letters E, F, G, H will be in the second group and so on. The value of the first group is fixed as 10, the second group as 20 and so on. The value of the last group is fixed as 50. In a group, the value of each letter will be the value of that group. To calculate the value of a word, you should give the same value of each of the letters as the value of the group to which a particular letter belongs and then add all the letters of the word: If all the letters in the word belong to one group only, then the value of that word will be equal to the product of the number of letters in the word and the value of the group to which the letters belong. However, if the letters of the words belong to different groups, then first write the value of all the letters. The value of the word would be equal to the sum of the value of the first letter and double the sum of the values of the remaining letters.For Example : The value of word ‘CAB’ will be equal to 10 + 10 + 10 = 30, because all the three letters (the first letter and the remaining two) belong to the first group and so the value of each letter is 10. The value of letter BUT = $$10 + 2 \times 40 + 2 \times 50 = 190$$ because the value of first letter B is 10, the value of T = 2 $$\times$$ 40 (T belongs to the fourth group) and the value of U = 2 $$\times$$ 50 (U belongs to the fifth group). Now calculate the value of each word given in questions 161 to 165 :AGE
 ...
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ...
MCQ->If q is charge on an electron, R is radius of electron orbit and ω is angular velocity of electron rotation, the magnetic dipole moment of electron in orbit is...
MCQ->Consider an arbitrary distribution of conducting bodies in a charge free space according to the uniqueness theorem, which of following are required to be specified in order that the field is uniquely determined everywhere? Total charge on each conductorPotential at each conductor surfacePotential at same of conductor and total charge on the remainderTotal charge as well as potential gradient on each conductor surface Select the correct answer using the codes given below codes...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions