1. The basic principle of co-operative organization is :

Answer: Self help and mutual help

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The basic principle of co-operative organization is :....
QA->One who has regard for others as the basic principle of his actions....
QA->What is the basic attribute of a formal organization?....
QA->Voting principle of a Co-operative society is:....
QA->Who has been elected the first President of the World Association of Newspapers and News Publishers (WAN-IFRA), the organization created by the July merger of the World Association of Newspapers and IFRA, the research and service organization for the news publishing industry?....
MCQ-> When people react to their experiences with particular authorities, those authorities and the organizations or institutions that they represent often benefit if the people involved begin with high levels of commitment to the organization or institution represented by the authorities. First, in his studies of people's attitudes toward political and legal institutions, Tyler found that attitudes after an experience with the institution were strongly affected by prior attitudes. Single experiences influence post- experience loyalty but certainly do not overwhelm the relationship between pre-experience and post- experience loyalty. Thus, the best predictor of loyalty after an experience is usually loyalty before that experience. Second, people with prior loyalty to the organization or institution judge their dealings with the organization’s or institution's authorities to be fairer than do those with less prior loyalty, either because they are more fairly treated or because they interpret equivalent treatment as fairer.Although high levels of prior organizational or institutional commitment are generally beneficial to the organization or institution, under certain conditions high levels of prior commitment may actually sow the seeds of reduced commitment. When previously committed individuals feel that they were treated unfavourably or unfairly during some experience with the organization or institution, they may show an especially sharp decline in commitment. Two studies were designed to test this hypothesis, which, if confirmed, would suggest that organizational or institutional commitment has risks, as well as benefits. At least three psychological models offer predictions of how individuals’ reactions may vary as a function of a: their prior level of commitment and b: the favorability of the encounter with the organization or institution. Favorability of the encounter is determined by the outcome of the encounter and the fairness or appropriateness of the procedures used to allocate outcomes during the encounter. First, the instrumental prediction is that because people are mainly concerned with receiving desired outcomes from their encounters with organizations, changes in their level of commitment will depend primarily on the favorability of the encounter. Second, the assimilation prediction is that individuals' prior attitudes predispose them to react in a way that is consistent with their prior attitudes.The third prediction, derived from the group-value model of justice, pertains to how people with high prior commitment will react when they feel that they have been treated unfavorably or unfairly during some encounter with the organization or institution. Fair treatment by the other party symbolizes to people that they are being dealt with in a dignified and respectful way, thereby bolstering their sense of self-identity and self-worth. However, people will become quite distressed and react quite negatively if they feel that they have been treated unfairly by the other party to the relationship. The group-value model suggests that people value the information they receive that helps them to define themselves and to view themselves favorably. According to the instrumental viewpoint, people are primarily concerned with the more material or tangible resources received from the relationship. Empirical support for the group-value model has implications for a variety of important issues, including the determinants of commitment, satisfaction, organizational citizenship, and rule following. Determinants of procedural fairness include structural or interpersonal factors. For example, structural determinants refer to such things as whether decisions were made by neutral, fact-finding authorities who used legitimate decision-making criteria. The primary purpose of the study was to examine the interactive effect of individuals a: commitment to an organization or institution prior to some encounter and b: perceptions of how fairly they were treated during the encounter, on the change in their level of commitment. A basic assumption of the group-value model is that people generally value their relationships with people, groups, organizations, and institutions and therefore value fair treatment from the other party to the relationship. Specifically, highly committed members should have especially negative reactions to feeling that they were treated unfairly, more so than a: less- committed group members or b: highly committed members who felt that they were fairly treated.The prediction that people will react especially negatively when they previously felt highly committed but felt that they were treated unfairly also is consistent with the literature on psychological contracts. Rousseau suggested that, over time, the members of work organizations develop feelings of entitlement, i.e., perceived obligations that their employers have toward them. Those who are highly committed to the organization believe that they are fulfilling their contract obligations. However, if the organization acted unfairly, then highly committed individuals are likely to believe that the organization did not live up to its end of the bargain.The hypothesis mentioned in the passage tests at least one of the following ideas.
 ...
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ...
MCQ-> Study the information given below and answer the questions.The following table contains the pre and post revision pay structure of a Government departmentThe revision has been done based on the following terms: -In pre-revised pay scale, the basic pay is the sum of the minimum pay in the appropriate pay scale and the admissible increment. After revision, the basic pay is the sum of minimum pay in the appropriate pay scale and the respective grade pay and the admissible increments. -Annual increment of 3% of the basic pay (on a compounded basic) is paid under the revised pay rules. -Monthly Dearness Allowance (DA) is calculated as percentage of basic pay. -In pre-revised pay scales, the increment was given after the completion of each year of service, but, after revision annual increments are given only in the month of July every year and there should be a gap of six months between the increments. The employees who had joined the department in the month of September, October, November and December are given an increment at the time of revised pay fixation in September, 2008. The revised pay is applicable from 1st September, 2008.Abhijit joins the department on November 10, 2006 in the pay scale of Rs. 18,400-500-22,400 with the pay of Rs. 18,400 plus 2 increments. What is his basic salary, after revision, on August 1, 2009?
 ...
MCQ-> Read the  following  discussion/passage  and provide an appropriate answer for the questions that follow. Of the several features of the Toyota Production System that have been widely studied, most important is the mode of governance of the shop - floor at Toyota. Work and inter - relations between workers are highly scripted in extremely detailed ‘operating procedures’ that have to be followed rigidly, without any deviation at Toyota. Despite such rule - bound rigidity, however, Toyota does not become a ‘command - control system’. It is able to retain the character of a learning organizationIn fact, many observers characterize it as a community of scientists carrying out several small experiments simultaneously. The design of the operating procedure is the key. Every principal must find an expression in the operating procedure – that is how it has an effect in the domain of action. Workers on the shop - floor, often in teams, design the ‘operating procedure’ jointly with the supervisor through a series of hypothesis that are proposed and validated or refuted through experiments in action. The rigid and detailed ‘operating procedure’ specification throws up problems of the very minute kind; while its resolution leads to a reframing of the procedure and specifications. This inter - temporal change (or flexibility) of the specification (or operating procedure) is done at the lowest level of the organization; i.e. closest to the site of action. One implication of this arrangement is that system design can no longer be rationally optimal and standardized across the organization. It is quite common to find different work norms in contiguous assembly lines, because each might have faced a different set of problems and devised different counter - measures to tackle it. Design of the coordinating process that essentially imposes the discipline that is required in large - scale complex manufacturing systems is therefore customized to variations in man - machine context of the site of action. It evolves through numerous points of negotiation throughout the organization. It implies then that the higher levels of the hierarchy do not exercise the power of the fiat in setting work rules, for such work rules are no longer a standard set across the whole organization. It might be interesting to go through the basic Toyota philosophy that underlines its system designing practices. The notion of the ideal production system in Toyota embraces the following -‘the ability to deliver just - in - time (or on demand) a customer order in the exact specification demanded, in a batch size of one (and hence an infinite proliferation of variants, models and specifications), defect - free, without wastage of material, labour, energy or motion in a safe and (physically and emotionally) fulfilling production environment’. It did not embrace the concept of a standardized product that can be cheap by giving up variations. Preserving consumption variety was seen, in fact, as one mode of serving society. It is interesting to note that the articulation of the Toyota philosophy was made around roughly the same time that the Fordist system was establishing itself in the US automotive industry. What can be best defended as the asset which Toyota model of production leverages to give the vast range of models in a defect - free fashion?
 ...
MCQ->Pick out thể one word for - a secret arrangement...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions