1. Bacteria of genus Nitrosomonas use __________ as their electron source.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Kerala-based private sector lender Federal Bank is openingincubation centres for startups in __________ and __________.....
QA->A newlydiscovered fish of the genus Tosanoides was in September 2016 named after whichpersonality?....
QA->Among source of power India has largest reserves of which source of power?....
QA->During which period of evolution man discovered the use of jute and began to use cloth made of jute?....
QA->Which countries signed defense agreements on November 2, 2010 that promised cooperation including the creation of a joint expeditionary force, shared use of aircraft carriers and combined efforts to improve the safety and effectiveness of their nuclear weapons?....
MCQ->Bacteria of genus Nitrosomonas use __________ as their electron source.....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words have been printed in ‘’bold’’ to help you locate them while answering some of the questions.The evolution of Bring Your Own Device (BYOD) trend has been as profound as it has been rapid. It represents the more visible sign that the boundaries between personal life and work life are blurring. The 9 a.m. - 5 p.m. model of working solely from office has become archaic and increasingly people are working extended hours from a range of locations. At the very heart of this evolution is the ability to access enterprise networks from anywhere and anytime. The concept of cloud computing serves effectively to extend the office out of office. The much heralded benefit of BYOD is greater productivity. However, recent research has suggested that this is the greatest myth of BYOD and the reality is that BYOD in practise poses new challenges that may outweigh the benefits. A worldwide commissioned by Fortinet choose to look at attitudes towards BYOD and security from the user’s point of view instead of the IT managers. Specifically the survey was conducted in 15 territories on a group of graduate employees in their early twenties because they represent the first generation to enter the workplace with an expectation of own device use. Moreover, they also represent tomorrow’s influences and decision markers. The survey findings reveals that for financial organizations, the decision to embrace BYOB is extremely dangerous. Larger organizations will have mature IT strategies and policies in place. But what about smaller financial business? They might not have such well developed strategies to protect confidential data. Crucially, within younger employee groups, 55% of the people share an expectation that they should be allowed to use their own devices in the workplace or for work purposes. With this expectation comes the very real risk that employees may consider contravening company policy banning the use of own devices. The threats posed by this level of subversion cannot be overstated. The survey casts doubt on the idea of BYOD leading to greater productivity by revealing the real reason people want to use their own devices. Only 26% of people in this age group cite efficiency as the reason they want to use their own devices, while 63% admit that the main reason is so they have access to their favourite applications. But with personal applications so close to hand, the risks to the business must surely include distraction and time wasting. To support this assumption 46% of people polled acknowledged time wasting as the greatest threat to the organization, while 42% citing greater exposure to theft or loss of confidential data. Clearly, from a user perspective there is great deal of contradiction surroundings BYOB and there exists an undercurrent of selfishness where users expect to use their own devices, but mostly for personal interest. They recognize the risks to the organization but are adamant that those risks are worth talking.According to the passage, for which of the following reasons did Fortinet conduct the survey on a group of graduate employees in their early twenties?A: As this group represents the future decision makers B: As this group represents the first generation who entered the workforce with a better understanding of sophisticated gadgets C: As this group represents the first generation to enter the workplace expecting that they can use their own devices for work purpose....
MCQ-> Since World War II, the nation-state has been regarded with approval by every political system and every ideology. In the name of modernisation in the West, of socialism in the Eastern bloc, and of development in the Third World, it was expected to guarantee the happiness of individuals as citizens and of peoples as societies. However, the state today appears to have broken down in many parts of the world. It has failed to guarantee either security or social justice, and has been unable to prevent either international wars or civil wars. Disturbed by the claims of communities within it, the nation-state tries to repress their demands and to proclaim itself as the only guarantor of security of all. In the name of national unity, territorial integrity, equality of all its citizens and non-partisan secularism, the state can use its powerful resources to reject the demands of the communities; it may even go so far as genocide to ensure that order prevails.As one observes the awakening of communities in different parts of the world, one cannot ignore the context in which identity issues arise. It is no longer a context of sealed frontiers and isolated regions but is one of integrated global systems. In a reaction to this trend towards globalisation, individuals and communities everywhere are voicing their desire to exist, to use their power of creation and to play an active part in national and international life.There are two ways in which the current upsurge in demands for the recognition of identities can be looked at. On the positive side, the efforts by certain population groups to assert their identity can be regarded as "liberation movements", challenging oppression and injustice. What these groups are doing - proclaiming that they are different, rediscovering the roots of their culture or strengthening group solidarity - may accordingly be seen as legitimate attempts to escape from their state of subjugation and enjoy a certain measure of dignity. On the downside, however, militant action for recognition tends to make such groups more deeply entrenched in their attitude and to make their cultural compartments even more watertight. The assertion of identity then starts turning into self-absorption and isolation, and is liable to slide into intolerance of others and towards ideas of "ethnic cleansing", xenophobia and violence.Whereas continuous variations among peoples prevent drawing of clear dividing lines between the groups, those militating for recognition of their group's identity arbitrarily choose a limited number of criteria such as religion, language, skin colour, and place of origin so that their members recognise themselves primarily in terms of the labels attached to the group whose existence is being asserted. This distinction between the group in question and other groups is established by simplifying the feature selected. Simplification also works by transforming groups into essences, abstractions endowed with the capacity to remain unchanged through time. In some cases, people actually act as though the group has remained unchanged and talk, for example, about the history of nations and communities as if these entities survived for centuries without changing, with the same ways of acting and thinking, the same desires, anxieties, and aspirations. Paradoxically, precisely because identity represents a simplifying fiction, creating uniform groups out of disparate people, that identity performs a cognitive function. It enables us to put names to ourselves and others, form some idea of who we are and who others are, and ascertain the place we occupy along with the others in the world and society. The current upsurge to assert the identity of groups can thus be partly explained by the cognitive function performed by identity. However, that said, people would not go along as they do, often in large numbers, with the propositions put to them, in spite of the sacrifices they entail, if there was not a very strong feeling of need for identity, a need to take stock of things and know "who we are", "where we come from", and "where we are going".Identity is thus a necessity in a constantly changing world, but it can also be a potent source of' violence and disruption. How can these two contradictory aspects of identity be reconciled? First, we must bear the arbitrary nature of identity categories in mind, not with a view to eliminating all forms of identification—which would be unrealistic since identity is a cognitive necessity—but simply to remind ourselves that each of us has several identities at the same time. Second, since tears of nostalgia are being shed over the past, we recognise that culture is constantly being recreated by cobbling together fresh and original elements and counter-cultures. There are in our own country a large number of syncretic cults wherein modern elements are blended with traditional values or people of different communities venerate saints or divinities of particular faiths. Such cults and movements are characterised by a continual inflow and outflow of members which prevent them from taking on a self-perpetuating existence of their own and hold out hope for the future, indeed, perhaps for the only possible future. Finally, the nation-state must respond to the identity urges of its constituent communities and to their legitimate quest for security and social justice. It must do so by inventing what the French philosopher and sociologist, Raymond Aron, called "peace through law". That would guarantee justice both to the state as a whole and its parts, and respect the claims of both reason and emotions. The problem is one of reconciling nationalist demands with the exercise of democracy.According to the author, happiness of individuals was expected to be guaranteed in the name of:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions