1. ’Brain Chamber’is studied in library Science in:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which scientist studied about wheat rust problem?....
QA->Which part of human brain is known as " Little brain "....
QA->Part of brain known as ‘Little brain’?....
QA->Accumulation of carbon deposit on combustion chamber of an IC engine leads to increase in :....
QA->Which is not correct as regards to an open type combustion chamber?....
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ....
MCQ-> Analyse the following passage and provide appropriate answers for questions that follow. The understanding that the brain has areas of specialization has brought with it the tendency to teach in ways that reflect these specialized functions. For example, research concerning the specialized functions of the left and right hemispheres has led to left and right hemisphere teaching. Recent research suggests that such an approach neither reflects how the brain learns, nor how it functions once learning has occurred. To the contrary, in most ‘higher vertebrates’ brain systems interact together as a whole brain with the external world. Learning is about making connections within the brain and between the brain and outside world. What does this mean? Until recently, the idea that the neural basis for learning resided in connections between neurons remained a speculation. Now, there is direct evidence that when learning occurs, neuro – chemical communication between neurons is facilitated, and less input is required to activate established connections over time. This evidence also indicates that learning creates connections between not only adjacent neurons but also between distant neurons, and that connections are made from simple circuits to complex ones and from complex circuits to simple ones As connections are formed among adjacent neurons to form circuits, connections also begin to form with neurons in other regions of the brain that are associated with visual, tactile, and even olfactory information related to the sound of the word. Meaning is attributed to ‘sounds of words’ because of these connections. Some of the brain sites for these other neurons are far from the neural circuits that correspond to the component sounds of the words; they include sites in other areas of the left hemisphere and even sites in the right hemisphere. The whole complex of interconnected neurons that are activated by the word is called a neural network. In early stages of learning, neural circuits are activated piecemeal, incompletely, and weakly. It is like getting a glimpse of a partially exposed and blurry picture. With more experience, practice, and exposure, the picture becomes clearer and more detailed. As the exposure is repeated, less input is needed to activate the entire network. With time, activation and recognition become relatively automatic, and the learner can direct her attention to other parts of the task. This also explains why learning takes time. Time is needed to establish new neutral networks and connections between networks. Thi suggests that the neutral mechanism for learning is essentially the same as the products of learning. Learning is a process that establishes new connections among networks. The newly acquired skills or knowledge are nothing but formation of neutral circuits and networks.It can be inferred that, for a nursery student, learning will ...
 ....
MCQ-> Please read the passage below and answer the questions that follow:It is sometimes said that consciousness is a mystery in the sense that we have no idea what it is. This is clearly not true. What could be better known to us than our own feelings and experiences? The mystery of consciousness is not what consciousness is, but why it is.Modern brain imaging techniques have provided us with a rich body of correlations between physical processes in the brain and the experiences had by the person whose brain it is. We know, for example, that a person undergoing stimulation in her or his ventromedial hypothalamus feels hunger. The problem is that no one knows why these correlations hold. It seems perfectly conceivable that ventromedial hypothalamus stimulation could do its job in the brain without giving rise to any kind of feeling at all. No one has even the beginnings of an explanation of why some physical systems, such as the human brain, have experiences. This is the difficulty David Chalmers famously called ‘the hard problem of consciousness’.Materialists hope that we will one day be able to explain consciousness in purely physical terms. But this project now has a long history of failure. The problem with materialist approaches to the hard problem is that they always end up avoiding the issue by redefining what we mean by ‘consciousness’. They start off by declaring that they are going to solve the hard problem, to explain experience; but somewhere along the way they start using the word ‘consciousness’ to refer not to experience but to some complex behavioural functioning associated with experience, such as the ability of a person to monitor their internal states or to process information about the environment. Explaining complex behaviours is an important scientific endeavour. But the hard problem of consciousness cannot be solved by changing the subject. In spite of these difficulties, many scientists and philosophers maintain optimism that materialism will prevail. At every point in this glorious history, it is claimed, philosophers have declared that certain phenomena are too special to be explained by physical science - light, chemistry, life - only to be subsequently proven wrong by the relentless march of scientific progress.Before Galileo it was generally assumed that matter had sensory qualities: tomatoes were red, paprika was spicy, flowers were sweet smelling. How could an equation capture the taste of spicy paprika? And if sensory qualities can’t be captured in a mathematical vocabulary, it seemed to follow that a mathematical vocabulary could never capture the complete nature of matter. Galileo’s solution was to strip matter of its sensory qualities and put them in the soul (as we might put it, in the mind). The sweet smell isn’t really in the flowers, but in the soul (mind) of the person smelling them … Even colours for Galileo aren’t on the surfaces of the objects themselves, but in the soul of the person observing them. And if matter in itself has no sensory qualities, then it’s possible in principle to describe the material world in the purely quantitative vocabulary of mathematics. This was the birth of mathematical physics.But of course Galileo didn’t deny the existence of the sensory qualities. If Galileo were to time travel to the present day and be told that scientific materialists are having a problem explaining consciousness in purely physical terms, he would no doubt reply, “Of course they do, I created physical science by taking consciousness out of the physical world!”Which of the following statements captures the essence of the passage?
 ....
MCQ->’Brain Chamber’is studied in library Science in:....
MCQ->‘Brain Chamber is studied in library Science in :....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions