1. Assertion (A): In hybrid digital circuits the problem of logic race can occur.Reason (R): In two level logic there is no problem of logic race.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which is electrical circuits used to get smooth de output from a rectified circuit called?....
QA->UnitedBank of India has adopted two villages, namely Patunagar and Sachindranagar ina state to implement schemes in the line of digital India program. Name thestate where these two villages are located.....
QA->Kalabhavan Digital Studio is a digital post processing studio owned by?....
QA->Which Indian company has been named as the 2016 Digital Innovator of the Year by GE Digital?....
QA->The problem of leaching of the soil is more pronounced in the areas how rainfall is there?....
MCQ->Assertion (A): In hybrid digital circuits the problem of logic race can occur.Reason (R): In two level logic there is no problem of logic race.

....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Analyse the following passage and provide appropriate answers for questions that follow. The understanding that the brain has areas of specialization has brought with it the tendency to teach in ways that reflect these specialized functions. For example, research concerning the specialized functions of the left and right hemispheres has led to left and right hemisphere teaching. Recent research suggests that such an approach neither reflects how the brain learns, nor how it functions once learning has occurred. To the contrary, in most ‘higher vertebrates’ brain systems interact together as a whole brain with the external world. Learning is about making connections within the brain and between the brain and outside world. What does this mean? Until recently, the idea that the neural basis for learning resided in connections between neurons remained a speculation. Now, there is direct evidence that when learning occurs, neuro – chemical communication between neurons is facilitated, and less input is required to activate established connections over time. This evidence also indicates that learning creates connections between not only adjacent neurons but also between distant neurons, and that connections are made from simple circuits to complex ones and from complex circuits to simple ones As connections are formed among adjacent neurons to form circuits, connections also begin to form with neurons in other regions of the brain that are associated with visual, tactile, and even olfactory information related to the sound of the word. Meaning is attributed to ‘sounds of words’ because of these connections. Some of the brain sites for these other neurons are far from the neural circuits that correspond to the component sounds of the words; they include sites in other areas of the left hemisphere and even sites in the right hemisphere. The whole complex of interconnected neurons that are activated by the word is called a neural network. In early stages of learning, neural circuits are activated piecemeal, incompletely, and weakly. It is like getting a glimpse of a partially exposed and blurry picture. With more experience, practice, and exposure, the picture becomes clearer and more detailed. As the exposure is repeated, less input is needed to activate the entire network. With time, activation and recognition become relatively automatic, and the learner can direct her attention to other parts of the task. This also explains why learning takes time. Time is needed to establish new neutral networks and connections between networks. Thi suggests that the neutral mechanism for learning is essentially the same as the products of learning. Learning is a process that establishes new connections among networks. The newly acquired skills or knowledge are nothing but formation of neutral circuits and networks.It can be inferred that, for a nursery student, learning will ...
 ....
MCQ-> Read the following passage carefully and answer the questions given.Do you ever feel there’s is a greater being inside of you bursting to get out? It is the voice that encourages you to really make something of your life. When you act congruently with that voice, it’s like your are a whole new person. You are bold and courageous. You are strong. You are unstoppable. But, then reality sets in, and soon those moments are history. It is not hard to put youself temporarily into an emotionally motivated state. Just listen to that motivational song for that matter. However, this motivation does not stay forever. Your great ideas seem impractical. How many times have you been temporarily inspired with a idea like, “I want to start my own business.” And then a week later it’s forgotten? You come up with inspiring ideas when you are motivated. But you fail to maintain that motivation through the action phase.The problem we ask ourselves is, why does this happen? You can listen to hundereds of motivational speakers and experience an emotional yo-yo effect, but it does not fast. The problem is that as we are intellectually guided, we try to find logic in emotional motivation and as we fail to find logic eventually phases out. I used to get frustrated when my emotional motivation fizzled out after a while. Eventually, I realised that being guided by intellect, was not such a bad thing after all. I just had to learn to use my mind as an effective motivational tool. I figured that if I was not feeling motivated to go after a particular goal, may be there was a logical reason for it. I noted that when I had strong intellectual reasons for doing something. I usually did not have trouble taking action.But when my mind thinks a goal is wrong on some level. I usually feel blocked. I eventually realised that this was my mind’s way of telling me the goal was a mistake to begin with. Sometimes a goal seem to make sense on one level but when you look further upstream, it becomes clear that the goal is ill advised. Suppose you work in sales, and you get a goal to increase your income by 20% by becoming a more effective salesperson. That seems like a reasonable and intelligent goal. But may be you are surprised to find yourself encountering all sorts of internal blocks when you try to pursue it. You should feel motivated, but you just don’t. The problem may be that on a deeper level your mind knows you don’t want to be working in sales at all. You really want to be a musician. Matter how hard you push yourself in sales career, it will always be a motivational dead end.Further when you set goals, that are too small and too timid, you suffer a perpetual lack of motivation. You just need to summon the courage to acknowledge your true desires. Then you will have to deal with the self-doubt and fear that’s been making you think too small. Ironically, the real key to motivation is to set the goals that scare you. You are letting fears, excuses and limiting beliefs hold you back. Your subconscious mind knows you are strong, so it won’t provide any motivational fuel until. You step up, face your fears, and acknowledge your hearts desire. Once you finally decide to face your tears and drop the excuses, then you will find your motivation turning on full blast.What does the author want to convey when he says, “When you look further upstream, it becomes clear that the goal is ill advised.”?
 ....
MCQ-> The Union Government’s present position vis-a-vis the upcoming United Nations conference on racial and related discrimination world-wide seems to be the following: discuss race please, not caste; caste is our very own and not at all as bad as you think. The gross hypocrisy of that position has been lucidly underscored by Kancha Ilaiah. Explicitly, the world community is to be cheated out of considering the matter on the technicality that caste is not, as a concept, tantamount to a racial category. Internally, however, allowing the issue to be put on agenda at the said conference would, we are patriotically admonished, damage the country’s image. Somehow, India’s virtual beliefs elbow out concrete actualities. Inverted representations, as we know, have often been deployed in human histories as balm for the forsaken — religion being the most persistent of such inversions. Yet, we would humbly submit that if globalising our markets is thought as good for the ‘national’ pocket, globalising our social inequities might not be so bad for the mass of our people. After all, racism was as uniquely institutionalised in South Africa as caste discrimination has been within our society; why then can’t we permit the world community to express itself on the latter with a fraction of the zeal with which, through the years, we pronounced on the former?As to the technicality about whether or not caste is admissible into an agenda about race (that the conference is also about ‘related discriminations’ tends to be forgotten), a reputed sociologist has recently argued that where race is a ‘biological’ category caste is a ‘social’ one. Having earlier fiercely opposed implementation of the Mandal Commission Report, the said sociologist is at least to be complemented now for admitting, however tangentially, that caste discrimination is a reality, although, in his view, incompatible with racial discrimination. One would like quickly to offer the hypothesis that biology, in important ways that affect the lives of many millions, is in itself perhaps a social construction. But let us look at the matter in another way.If it is agreed — as per the position today at which anthropological and allied scientific determinations rest — that the entire race of homo sapiens derived from an originary black African female (called ‘Eve’), then one is hard put to understand how, one some subsequent ground, ontological distinctions are to be drawn either between races or castes. Let us also underline the distinction between the supposition that we are all god’s children and the rather more substantiated argument about our descent from ‘Eve’, lest both positions are thought to be equally diversionary. It then stands to reason that all subsequent distinctions are, in modern parlance, ‘constructed’ ones, and like all ideological constructions, attributable to changing equations between knowledge and power among human communities through contested histories here, there, and elsewhere.This line of thought receives, thankfully, extremely consequential buttress from the findings of the Human Genome project. Contrary to earlier (chiefly 19th-century colonial) persuasions on the subject of race, as well as, one might add, the somewhat infamous Jensen offerings in the 20th century from America, those finding deny genetic difference between ‘races’. If anything, they suggest that environmental factors impinge on gene-function, as a dialectic seems to unfold between nature and culture. It would thus seem that ‘biology’ as the constitution of pigmentation enters the picture first only as a part of that dialectic. Taken together, the originary mother stipulation and the Genome findings ought indeed to furnish ground for human equality across the board, as well as yield policy initiatives towards equitable material dispensations aimed at building a global order where, in Hegel’s stirring formulation, only the rational constitutes the right. Such, sadly, is not the case as everyday fresh arbitrary grounds for discrimination are constructed in the interests of sectional dominance.When the author writes ‘globalising our social inequities’, the reference is to
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions