1. CMOS logic is probably the best all-around circuitry because of its:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->What is full form CMOS?....
QA->(P v q.≡ p q a famous law in logic known as :....
QA->The function of Arithmetic and Logic Unit (ALU) is?....
QA->When did the battle which is the story of Mahabharata most probably take place?....
QA->When did the battle which is the story of Mahabharata most probably take place ?....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
MCQ->CMOS logic is probably the best all-around circuitry because of its:....
MCQ-> One of the criteria by which we judge the vitality of a style of painting is its ability to renew itself- its responsiveness to the changing nature and quality of experience, the degree of conceptual and formal innovation that it exhibits. By this criterion, it would appear that the practice of abstractionism has failed to engage creatively with the radical change in human experience in recent decades. it has, seemingly, been unwilling to re-invent itself in relation to the systems of artistic expression and viewers’ expectations that have developed under the impact of the mass media. The judgement that abstractionism has slipped into ‘inertia gear’ is gaining endorsement, not only among discerning viewers and practitioners of other art forms, but also among abstract painters themselves. Like their companions elsewhere in the world, abstraction lists in India are asking themselves an overwhelming question today: Does abstractionism have a future? The major- crisis that abstractionists face is that of revitalising their picture surface; few have improvised any solutions beyond the ones that were exhausted by the I 970s. Like all revolutions, whether in politics or in art, abstractionism must now confront its moment of truth: having begun life as a new and radical pictorial approach to experience, it has become an entrenched orthodoxy itself. Indeed, when viewed against a historical situation in which a variety of subversive, interactive and richly hybrid forms are available to the art practitioner, abstractionism assumes the remote and defiant air of an aristocracy that has outlived its age; trammelled by formulaic conventions yet buttressed by a rhetoric of sacred mystery, it seems condemned to being the last citadel of the self-regarding ‘fine art’ tradition, the last hurrah of painting for painting’s sake. The situation is further complicated in India by the circumstances in which an indigenous abstractionism came into prominence here during the 1960s. From the beginning it was propelled by the dialectic between two motives, one revolutionary and the other conservative-it was inaugurated as an act of emancipation from the dogmas of the nascent Indian nation state, when an’ was officially viewed as an indulgence at worst, and at best, as an instrument for the celebration of the republic’s hopes and aspirations. Having rejected these dogmas, the pioneering abstractionists also went on to reject the various figurative styles associated with the Santiniketan circle and others. In such a situation, abstractionism was a revolutionary move, It led art towards the exploration of the s 3onsc)ous mind, the spiritual quest and the possible expansion of consciousness. Indian painting entered into a phase of self-inquiry, a meditative inner space where cosmic symbols and non-representational images ruled. Often, the transition from figurative idioms to abstractionist ones took place within the same artist. At the same time, Indian abstractionists have rarely committed themselves wholeheartedly to a nonrepresentational idiom. They have been preoccupied with the fundamentally metaphysical project of aspiring to the mystical- holy without altogether renouncing the symbolic) This has been sustained by a hereditary reluctance to give up the murti, the inviolable iconic form, which explains why abstractionism is marked by the conservative tendency to operate with images from the sacred repertoire of the past. Abstractionism thus entered India as a double-edged device in a complex cultural transaction. ideologically, it served as an internationalist legitimisation the emerging revolutionary local trends. However, on entry; it was conscripted to serve local artistic preoccupations a survey of indigenous abstractionism will show that its most obvious points of affinity with European and American abstract art were with the more mystically oriented of the major sources of abstractionist philosophy and practice, for instance the Kandinsky-Klee school. There have been no takers for Malevich’s Suprematism, which militantly rejected both the artistic forms of the past and the world of appearances, privileging the new- minted geometric symbol as an autonomous sign of the desire for infinity. Against this backdrop, we can identify three major abstractionist idioms in Indian art. The first develops from a love of the earth, and assumes the form of a celebration of the self’s dissolution in the cosmic panorama; the landscape is no longer a realistic, transcription of the scene, but is transformed into a visionary occasion for contemplating the cycles of decay and regeneration. The second idiom phrases its departures from symbolic and archetypal devices as invitations to heightened planes of awareness. Abstractionism begins with the establishment or dissolution of the motif, which can be drawn from diverse sources, including the hieroglyphic tablet, the Sufi meditation dance or the Tantrie diagram. The third- idiom is based on the lyric play of forms guided by gesture or allied with formal improvisations like the assemblage. Here, sometimes, the line dividing abstract image from patterned design or quasi-random expressive marking may blur. The flux of forms can also be regimented through the poetics of pure colour arrangements, vector-diagrammatic spaces anti gestural design. In this genealogy, some pure lines of descent follow their logic to the inevitable point of extinction, others engage in cross-fertilisation and yet others undergo mutation to maintain their energy. However, this genealogical survey demonstrates the wave at its crests, those points where the metaphysical and the painterly have been fused in images of abiding potency, ideas sensuously ordained rather than fabricated programmatically to a concept. It is equally possible to enumerate the troughs where the two principles do not come together, thus arriving at a very different account. Uncharitable as it may sound, the history of Indian abstractionism records a series of attempts to avoid the risks of abstraction by resorting to an overt and near-generic symbolism which many Indian abstractionists embrace when they find themselves bereft of the imaginative energy to negotiate the union of metaphysics and painterliness. Such symbolism falls into a dual trap: it succumbs to the pompous vacuity of pure metaphysics when the burden of intention is passed off as justification; or then it is desiccated by the arid formalism of pure painterliness, with delight in the measure of chance or pattern guiding the execution of a painting. The ensuing conflict of purpose stalls the progress of abstractionism in an impasse. The remarkable Indian abstractionists are precisely those who have overcome this and addressed themselves to the basic elements of their art with a decisive sense of independence from prior models. In their recent work, we see the logic of Indian abstractionism pushed almost to the furthest it can be taken. Beyond such artists stands a lost generation of abstractionists whose work invokes a wistful, delicate beauty but stops there. Abstractionism is not a universal language; it is an art that points up the loss of a shared language of signs in society. And yet, it affirms the possibility of its recovery through the effort of awareness. While its rhetoric has always emphasised a call for new forms of attention, abstractionist practice has tended to fall into a complacent pride in its own incomprehensibility; a complacency fatal in an ethos where vibrant new idioms compete for the viewers’ attention. Indian abstractionists ought to really return to basics, to reformulate and replenish their understanding of the nature of the relationship between the painted image and the world around it. But will they abandon their favourite conceptual habits and formal conventions, if this becomes necessary?Which one of the following is not stated by the author as a reason for abstractionism losing its vitality?
 ....
MCQ-> The painter is now free to paint anything he chooses. There are scarcely any forbidden subjects, and today everybody is prepared o admit that a painting of some fruit can be as important as painting of a hero dying. The Impressionists did as much as anybody to win this previously unheard of freedom for the artist. Yet, by the next generation, painters began to abandon tie subject altogether, and began to paint abstract pictures. Today the majority of pictures painted are abstract.Is there a connection between these two developments? Has art gone abstract because the artist is embarrassed by his freedom? Is it that, because he is free to paint anything, he doesn’t know what to paint? Apologists for abstract art often talk of it as Inc art of maximum freedom. But could this be the freedom of the desert island? It would take too long to answer these questions properly. I believe there is a connection. Many things have encouraged the development of abstract art. Among them has been the artists’ wish to avoid the difficulties of finding subjects when all subjects are equally possible.I raise the matter now because I want to draw attention to the fact that the painter’s choice of a subject is a far more complicated question than it would at first seem. A subject does not start with what is put in front of the easel or with something which the painter happens to remember. A subject starts with the painter deciding he would like to paint such-and-such because for some reason or other he finds it meaningful. A subject begins when the artist selects something for special mention. (What makes it special or meaningful may seem to the artist to be purely visual — its colours or its form.) When the subject has been selected, the function of the painting itself is to communicate and justify the significance of that selection.It is often said today that subject matter is unimportant. But this is only a reaction against the excessively literary and moralistic interpretation of subject matter in the nineteenth century. In truth the subject is literally the beginning and end of a painting. The painting begins with a selection (I will paint this and not everything else in the world); it is finished when that selection is justified (now you can see all that I saw and felt in this and how it is more than merely itself).Thus, for a painting to succeed it is essential that the painter and his public agree about what is significant. The subject may have a personal meaning for the painter or individual spectator; but there must also be the possibility of their agreement on its general meaning. It is at this point that the culture of the society and period in question precedes the artist and his art. Renaissance art would have meant nothing to the Aztecs — and vice versa. If, to some extent, a few intellectuals can appreciate them both today it is because their culture is an historical one: its inspiration is history and therefore it can include within itself, in principle if not in every particular, all known developments to date.When culture is secure and certain of its values, it presents its artists with subjects. The general agreement about what is significant is so well established that the significance of a particular subject accrues and becomes traditional. This is true, for instance, of reeds and water in China, of the nude body in Renaissance, of the animal in Africa. Furthermore in such cultures the artist is unlikely to be a free agent: he will be employed for the sake of particular subjects, and the problem, as we have just described it, will not occur to him.When a culture is in a state of disintegration or transitions the freedom of the artist increases — but the question of subject matter becomes problematic for him: he, himself, has to choose for society. This was at the basis of all the increasing crises in European art during the nineteenth century. It is too often forgotten how any of the art scandals of that time were provoked by the choice of subject (Gericault, Courbet, Daumier, Degas, Lautrec, Van Gogh, etc.).By the end of the nineteenth century there were, roughly speaking, two ways in which the painter could meet this challenge of deciding what to paint and so choosing for society. Either he identified himself with the people and so allowed their lives to dictate his subjects to him or he had to find his subjects within himself as painter. By people I mean everybody except the, bourgeoisie. Many painters did of course work for the bourgeoisie according to their copy-book of approved subjects, but all of them, filling the Salon and the Royal Academy year after year, are now forgotten, buried under the hypocrisy of those they served so sincerely.When a culture is insecure, the painter chooses his subject on the basis of:
 ....
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions