1. The circuit given below fails to produce data output. The individual flip-flops are checked with a logic probe and pulser, and each checks OK. What could be causing the problem?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->To construct a binary Mod-N counter, the number of flip-flops needs is:....
QA->Which is electrical circuits used to get smooth de output from a rectified circuit called?....
QA->At the time of short-circuit; what will be the current in the circuit?....
QA->At the time of short-circuit, what will be the current in the circuit?....
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
MCQ->The circuit given below fails to produce data output. The individual flip-flops are checked with a logic probe and pulser, and each checks OK. What could be causing the problem?

....
MCQ->The RAM circuit given below is suspected of being bad. A check with a logic probe shows pulse activity on all of the address lines and data inputs. The / line and inputs are forced HIGH and the data output lines are checked with the logic probe. Q0, Q2, and Q3 show a dim indication on the logic probe; Q1 indicates a HIGH level on the logic probe. What, if anything, is wrong with the circuit?

....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ->The circuit given below fails to function; the inputs are checked with a logic probe and the following indications are obtained: CLK, J1, J2, J3, K1, K2, and K3 are pulsing. Q and are HIGH. and PRE are LOW. What could be causing the problem?

....
MCQ-> Please read the passage below and answer the questions that follow:It is sometimes said that consciousness is a mystery in the sense that we have no idea what it is. This is clearly not true. What could be better known to us than our own feelings and experiences? The mystery of consciousness is not what consciousness is, but why it is.Modern brain imaging techniques have provided us with a rich body of correlations between physical processes in the brain and the experiences had by the person whose brain it is. We know, for example, that a person undergoing stimulation in her or his ventromedial hypothalamus feels hunger. The problem is that no one knows why these correlations hold. It seems perfectly conceivable that ventromedial hypothalamus stimulation could do its job in the brain without giving rise to any kind of feeling at all. No one has even the beginnings of an explanation of why some physical systems, such as the human brain, have experiences. This is the difficulty David Chalmers famously called ‘the hard problem of consciousness’.Materialists hope that we will one day be able to explain consciousness in purely physical terms. But this project now has a long history of failure. The problem with materialist approaches to the hard problem is that they always end up avoiding the issue by redefining what we mean by ‘consciousness’. They start off by declaring that they are going to solve the hard problem, to explain experience; but somewhere along the way they start using the word ‘consciousness’ to refer not to experience but to some complex behavioural functioning associated with experience, such as the ability of a person to monitor their internal states or to process information about the environment. Explaining complex behaviours is an important scientific endeavour. But the hard problem of consciousness cannot be solved by changing the subject. In spite of these difficulties, many scientists and philosophers maintain optimism that materialism will prevail. At every point in this glorious history, it is claimed, philosophers have declared that certain phenomena are too special to be explained by physical science - light, chemistry, life - only to be subsequently proven wrong by the relentless march of scientific progress.Before Galileo it was generally assumed that matter had sensory qualities: tomatoes were red, paprika was spicy, flowers were sweet smelling. How could an equation capture the taste of spicy paprika? And if sensory qualities can’t be captured in a mathematical vocabulary, it seemed to follow that a mathematical vocabulary could never capture the complete nature of matter. Galileo’s solution was to strip matter of its sensory qualities and put them in the soul (as we might put it, in the mind). The sweet smell isn’t really in the flowers, but in the soul (mind) of the person smelling them … Even colours for Galileo aren’t on the surfaces of the objects themselves, but in the soul of the person observing them. And if matter in itself has no sensory qualities, then it’s possible in principle to describe the material world in the purely quantitative vocabulary of mathematics. This was the birth of mathematical physics.But of course Galileo didn’t deny the existence of the sensory qualities. If Galileo were to time travel to the present day and be told that scientific materialists are having a problem explaining consciousness in purely physical terms, he would no doubt reply, “Of course they do, I created physical science by taking consciousness out of the physical world!”Which of the following statements captures the essence of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions