1. The file structure that redefines its first record at a base of zero uses the term:






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->When a file is finally disposed of the file with a copy of which is sent to record room:....
QA->For implementing recursion in a programming language, its compiler uses the following data structure extensively:....
QA->From when was the Zero Base Budgeting in India first experimented....
QA->From when was the Zero Base Budgeting in India first experimented?....
QA->The extension jpeg in the name of a file indicates that it is a/an file.....
MCQ->The file structure that redefines its first record at a base of zero uses the term:....
MCQ-> DIRECTIONS for questions:These questions are based on the situation given below:Recently, Ghosh Babu spent his winter vacation on Kyakya Island. During the vacation, he visited the local casino where he came across a new card game. Two players, using a normal deck of 52 playing cards, play this game. One player is called the Dealer and the other is called the Player. First, the Player picks a card at random from the deck. This is called the base card. The amount in rupees equal to the face value of the base card is called the base amount. The face values of Ace, King, Queen and Jack are ten. For other cards, the face value is the number on the card. Once, the Player picks a card from the deck, the Dealer pays him the base amount. Then the dealer picks a card from the deck and this card is called the top card. If the top card is of the same suit as the base card, the Player pays twice the base amount to the Dealer. If the top card is of the same colour as the base card (but not the same suit) then the Player pays the base amount to the Dealer. If the top card happens to be of a different colour than the base card, the Dealer pays the base amount to the Player. Ghosh Babu played the game 4 times. First time he picked eight of clubs and the Dealer picked queen of clubs. Second time, he picked ten of hearts and the dealer picked two of spades. Next time, Ghosh Babu picked six of diamonds and the dealer picked ace of hearts. Lastly, he picked eight of spades and the dealer picked jack of spades. Answer the following questions based on these four games.If Ghosh Babu stopped playing the game when his gain would be maximized, the gain in Rs. would have been
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ->What will be the output of the following program? #include<iostream.h> class Base { int x, y; public: Base() { x = y = 0; } Base(int xx) { x = xx; } Base(int p, int q = 10) { x = p + q; y = q; } void Display(void) { cout<< x << " " << y << endl; } }objDefault(1, 1); class Derived: public Base { Base obj; public: Derived(int xx, int yy): Base(xx, xx + 1) { } Derived(Base objB = objDefault) { } }; int main() { Derived objD(5, 3); Derived ptrD = new Derived(objD); ptrD->Display(); delete ptrD; return 0; }....
MCQ-> Answer questions based on the following information: An automobiles company’s annual sales of its small cars depends on the state of the economy as well as on whether the company uses some high profile individual as its brand ambassador in advertisements of its product. The state of the economy is “good”, “okay” and “bad” with probabilities 0.3, 0.4 and 0.3 respectively. The company may choose a high profile individual as its brand ambassador in TV ads or may go for the TV ads without a high profile brand ambassador. If the company fixes price at Rs. 3.5 lakh, the annual sales of its small cars for different states of the economy and for different kinds of TV ads are summarized in table 1. The figures in the first row are annual sales of the small cars when the company uses a high profile individual as its brand ambassador in its TV ads and the ones in the second row are that when the company does not use any brand ambassador in TV ads, for different states of the economy. Table 1: Without knowing what exactly will be the state of the company in the coming one year, the company will either have to sign a TV ad contract with some high profile individual, who will be the company’s brand ambassador for its small car for the next one year, or go for a TV ad without featuring any high profile individual. It incurs a cost of Rs. 3.45 lakh (excluding the payment to the brand ambassador) to put a car on the road. When the company’s profit is uncertain, the company makes decisions on basis of its expected profit. If the company can earn a profit xi with probability pi (the probability depends on the state of economy), then the expected profit of the company is $$\sum_1XiPi$$The maximum that the company can afford to pay its brand ambassador is
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions