1. Systems software is a program that directs the overall operation of the computer, facilitates its use and interacts with the users. What are the different types of this software?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->AN ATTEMPT TO MAKE A COMPUTER RESOURCE UNAVAILABLE TO ITS INTENDED USERS IS KNOWN AS....
QA->TheIndian Navy has inducted 4 types of SONAR systems. What are their names?....
QA->According to the rules for correspondence which officer can address govt. directs:....
QA->A _____ is a computer attached to the internet that runs a special web server software and can send web pages out to the other computer over the internet.....
QA->BLUE TIGER AND GLASSY TIGER ARE DIFFERENT TYPES OF WHAT....
MCQ-> Please read the three reports (newspaper articles) on ranking of different players and products in smart phones industry and answer the questions that follow. Report 1: (Feb, 2013) Apple nabs crown as current top US mobile phone vendor Apple’s reign may not be long, as Samsung is poised to overtake Apple in April, 2013. For the first time since Apple entered the mobile phone market in 2007, it has been ranked the top mobile phone vendor in the US. For the latter quarter of 2012, sales of its iPhone accounted for 34 percent of all mobile phone sales in the US - including feature phones - according to the latest data from Strategy Analytics. While the iPhone has consistently been ranked the top smartphone sold in the US, market research firm NPD noted that feature phone sales have fallen off a cliff recently, to the point where 8 out of every 10 mobile phones sold in the US are now smartphones. That ratio is up considerably from the end of 2011, when smartphones had just cracked the 50 percent mark. Given this fact it’s no surprise that Apple, which only sells smartphones, has been able to reach the top of the overall mobile phone market domestically. For the fourth quarter of 2012, Apple ranked number one with 34 percent of the US mobile market, up from 25.6 percent year over year. Samsung grew similarly, up to 32.3 percent from 26.9 percent - but not enough to keep from slipping to second place. LG dropped to 9 percent from 13.7 percent, holding its third place spot. It should be noted that Samsung and LG both sell a variety of feature phones in addition to smartphones. Looking only at smartphones, the ranking is a little different according to NPD. Apple holds the top spot with 39 percent of the US smartphone market, while Samsung again sits at number two with 30 percent. Motorola manages to rank third with 7 percent, while HTC dropped to fourth with 6 percent. In the US smartphone market, LG is fifth with 6 percent. Note how the percentages aren’t all that different from overall mobile phone market share - for all intents and purposes, the smartphone market is the mobile phone market in the US going forward. Still, Samsung was the top mobile phone vendor overall for 2012, and Strategy Analytics expects Samsung to be back on top soon. “Samsung had been the number one mobile phone vendor in the US since 2008, and it will surely be keen to recapture that title in 2013 by launching improved new models such as the rumored Galaxy S4”. And while Apple is the top vendor overall among smartphones, its iOS platform is still second to the Android platform overall. Samsung is the largest vendor selling Android-based smartphones, but Motorola, HTC, LG, and others also sell Android devices, giving the platform a clear advantage over iOS both domestically and globally. Report 2: Reader’s Response (2013, Feb) I don’t actually believe the numbers for Samsung. Ever since the debacle in early 2011, when Lenovo called into question the numbers Samsung was touting for tablet shipments, stating that Samsung had only sold 20,000 of the 1.5 million tablets they shipped into the US the last quarter of 2010, Samsung (who had no response to Lenovo) has refused to supply quarterly sales numbers for smartphones or tablets. That’s an indication that their sales aren’t what analysts are saying. We can look to several things to help understand why. In the lawsuit between Apple and Samsung here last year, both were required to supply real sales numbers for devices under contention. The phones listed turned out to have sales between one third and one half of what had been guessed by IDC and others. Tablet sales were even worse. Of the 1.5 million tablets supposedly shipped to the US during that time, only 38,000 were sold. Then we have the usage numbers. Samsung tablets have only a 1.5% usage rate, where the iPad has over 90%. Not as much a difference with the phones but it’s still overwhelmingly in favor of iPhone. The problem is that with Apple’s sales, we have actual numbers to go by. The companies who estimate can calibrate what they do after those numbers come out. But with Samsung and many others, they can’t ever calibrate their methods, as there are no confirming numbers released from the firms. A few quarters ago, as a result, we saw iSupply estimate Samsung’s smartphone sales for the quarter at 32 million, with estimates from others all over the place up to 50 million. Each time some other company reported a higher number for that same quarter, the press dutifully used that higher number as THE ONE. But none of them was the one. Without accurate self-reporting of actual sales to the end users, none of these market share charts are worth a damn! Report 3: Contradictory survey (Feb, 2013) iPhone5 Ranks Fifth In U.S. Customer Satisfaction Survey inShare. The iPhone5 ranks fifth in customer satisfaction according to the results of a recent survey from OnDevice Research, a mobile device research group. In the poll, they asked 320,000 smartphone and tablet users from six different countries, how satisfied they were with their devices. According to 93,825 people from the US, Motorola Atrix HD is the most satisfying and Motorola’s Droid Razr took second spot. HTC Corp (TPE : 2498)’s Rezound 4G and Samsung Galaxy Note 2 took third and fourth spots, while Apple’s iPhone5 landed in fifth spot. It appears that Apple may be lagging in consumer interest. OnDevice Research, Sarah Quinn explained, “Although Apple created one of the most revolutionary devices of the past decade, other manufactures have caught up, with some Android powered devices now commanding higher levels of user satisfaction.” Despite the lower rankings, things aren’t looking too bad for Apple Inc. (NASDAQ:AAPL) elsewhere. In the United Kingdom, they ranked second place, right after HTC One X. Interesting enough, Apple did take top spot for overall satisfaction of mobile device, whereas Google Inc. (NASDAQ:GOOG) ranked second. Motorola Mobility Holdings Inc. (NYSE:NOK) took third, fourth, and fifth places respectively, while Sony Ericsson trailed behind at sixth place. The survey sampled mobile device users in the following countries: United States, United Kingdom, France, Germany, Japan, and Indonesia. Although OnDevice didn’t share the full list of devices mentioned in the survey, it does show some insight to what customers want. Unfortunately, there were still many questions regarding the survey that were left unanswered. Everyone wants to know why Google Inc. (NASDAQ:GOOG) was on the list when they are not an actual smartphone maker and why was Samsung Electronics Co., Ltd. (LON:BC94) on the bottom of the satisfaction list when the brand is leading elsewhere. Source: 92.825 US mobile users, July 2012 - January 2013 Fortunately, those questions were answered by OnDevice Research’s representative. He explained that the survey was conducted on mobile web where the survey software could detect the taker’s device and since user’s rate their satisfaction levels on a 1 to 10 scale, thanks to the Nexus device, Google was included.If you analyze the three reports above, which of the following statements would be the best inference?
 ....
MCQ->Systems software is a program that directs the overall operation of the computer, facilitates its use and interacts with the users. What are the different types of this software?....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> Read the following passage carefully and answer the questions given. Certain words have been given in bold to help you locate them while answering some of the questions.We are told that economy is growing and that such growth benefits all of us. However, what you see is not what you always get. Most people are experiencing declining economic security in response to the problems of the global system, many communities have turned to Local Exchange Systems (LESs) to help regain some control over their economic situations.Local exchange systems come in many forms. They often involve the creation of a local currency, or a system of bartering labour, or trading of agricultural products as a means of supporting the region in which they are traded. Such a system helps preserve the viability of local economies.Local currencies allow communities to diversify their economies, reinvest resources back into their region and reduce dependence on the highly concentrated and unstable global economy. Each local currency system serves as an exchange bank for skills and resources that Individuals in the community are willing to trade. Whether in the form of paper money, service credits, or other units, a local currency facilitates the exchange of services and resources among the members of a community.By providing incentives for local trade, communities help their small businesses and reduce underemployment by providing the jobs within the community. In addition, the local exchange of food and seeds promotes environmental conservation and community food security. Local food production reduces wasteful transportation and promotes self-reliance and genetic diversity. Each transaction within a local exchange system strengthens the community fabric as neighbours interact and meet one another.There are over 1,000 local change programs worldwide more than 30 local paper currencies in North America and at least 800 Local Exchange Trading Systems (LETS) throughout Europe. New Zealand and Australia Local Exchange Systems vary and evolve in accordance with the needs and circumstances of the local area. This diversity is critical to the success of the local currencies. For instance, a bank in rural Massachusetts refused to lend a fanner the money needed to make it through the winter. In response, the farmer decided to print his own money Berkshire Farm Preserve Notes. In winter, customers buy the notes for $9 and they may redeem them in the summer for $10 worth of vegetables. The system enabled the community to help a farm family after being abandoned by the centralised monetary system. As small family farms continue to disappear at an alarming rate, local currencies provide tools for communities to bind together, support their local food growers and maintain their local food suppliers.Local Exchange Systems are not limited to developed countries.Rural areas of Asia, Latin America and Africa have offered some of the most effective and important programs, by adopting agriculture-based systems of exchange rather than monetary ones. In order to preserve genetic diversity, economic security and avoid dependence on industrial seed and chemical companies, many villages have developed seed saving exchange banks. For example, the village women in Ladakh have begun to collect and exchange rare seeds selected for their ability to grow in a harsh mountain climate. This exchange system protects agriculture diversity while promoting self-reliance. There is no one blueprint for a local exchange system, which is exactly why they are successful vehicles for localisation and sustainability. They promote local economic diversity and regional self-reliance while responding to a region’s specific needs. Local exchange systems play a pivotal role in creating models for sustainable societies. They are an effective educational tool, raising awareness about the global financial system and local economic matters. Local exchange systems also demonstrate that tangible, creative solutions exist and that communities can empower themselves to address global problems.Which of the following is same in meaning as the word ‘LIMITED TO’ as used in the passage?
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in ‘’bold’’ to help you locate them while answering some of the questions.As increasing dependence on information systems develops, the need for such system to be reliable and secure also becomes more essential. As growing numbers of ordinary citizens use computer networks for banking, shopping, etc., network security in potentially a ‘’massive’’ problem. Over the last few years, the need for computer and information security system has become increasingly evident, as web sites are being defaced with greater frequency, more and more denial-of-service attacks are being reported, credit card information is being stolen, there is increased sophistication of hacking tools that are openly available to the public on the Internet, and there is increasing damage being caused by viruses and worms to critical information system resources.At the organizational level, institutional mechanism have to be designed in order to review policies, practices, measures and procedures to review e-security regularly and assess whether these are appropriate to their environment. It would be helpful if organizations share information about threats and vulnerabilities, and implement procedures of rapid and effective cooperation to prevent, detect and respond to security incidents. As new threats and vulnerabilities are continuously discovered there is a strong need for co-operation among organizations and, if necessary, we could also consider cross-border information sharing. We need to understand threats and dangers that could be ‘’vulnerable’’ to and the steps that need to be taken to ‘’mitigate’’ these vulnerabilities. We need to understand access control systems and methodology, telecommunications and network security, and security management practise. We should be well versed in the area of application and systems development security, cryptography, operations security and physical security.The banking sector is ‘’poised’’ for more challenges in the near future. Customers of banks can now look forward to a large array of new offerings by banks, from an ‘’era’’ of mere competition, banks are now cooperating among themselves so that the synergistic benefits are shared among all the players. This would result in the information of shared payment networks (a few shared ATM networks have already been commissioned by banks), offering payment services beyond the existing time zones. The Reserve Bank is also facilitating new projects such as the Multi Application Smart Card Project which, when implemented, would facilitate transfer of funds using electronic means and in a safe and secure manner across the length and breadth of the country, with reduced dependence on paper currency. The opportunities of e-banking or e-power is general need to be harnessed so that banking is available to all customers in such a manner that they would feel most convenient, and if required, without having to visit a branch of a bank. All these will have to be accompanied with a high level of comfort, which again boils down to the issue of e-security.One of the biggest advantages accruing to banks in the future would be the benefits that arise from the introduction of Real Time Gross Settlement (RTGS). Funds management by treasuries of banks would be helped greatly by RTGS. With almost 70 banks having joined the RTGS system, more large value funds transfer are taking place through this system. The implementation of Core Banking solutions by the banks is closely related to RTGS too. Core Banking will make anywhere banking a reality for customers of each bank. while RTGS bridges the need for inter-bank funds movement. Thus, the days of depositing a cheque for collection and a long wait for its realization would soon be a thing of the past for those customers who would opt for electronic movement of funds, using the RTGS system, where the settlement would be on an almost ‘’instantaneous’’ basis. Core Banking is already in vogue in many private sector and foreign banks; while its implementation is at different stages amongst the public sector banks.IT would also facilitate better and more scientific decision-making within banks. Information system now provide decision-makers in banks with a great deal of information which, along with historical data and trend analysis, help in the building up of efficient Management Information Systems. This, in turn, would help in better Asset Liability Management (ALM) which, today’s world of hairline margins is a key requirement for the success of banks in their operational activities. Another benefit which e-banking could provide for relates to Customer Relationship Management (CRM). CRM helps in stratification of customers and evaluating customer needs on a holistic basis which could be paving the way for competitive edge for banks and complete customer care for customer of banks.The content of the passage ‘’mainly’’ emphasizes----
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions