1. In a simple screw jack, the pitch of the screw is 9 mm and length of the handle operating the screw is 45 cm. The velocity ratio of the system is





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->WHAT IS THE LENGTH OF CRICKET PITCH....
QA->A storage area used to store data to compensate for the difference in speed at which the different units can handle data is:....
QA->Highest useful compression ratio is the compression ratio at which the engine....
QA->The ratio of the age of two sisters is 3:The product of their ages is The ratio of their ages after 5 years will be:....
QA->A system call in Linux operating system to create a new child process, which is a copy of the parent process:....
MCQ->In a simple screw jack, the pitch of the screw is 9 mm and length of the handle operating the screw is 45 cm. The velocity ratio of the system is....
MCQ-> Read the  following  discussion/passage  and provide an appropriate answer for the questions that follow. Of the several features of the Toyota Production System that have been widely studied, most important is the mode of governance of the shop - floor at Toyota. Work and inter - relations between workers are highly scripted in extremely detailed ‘operating procedures’ that have to be followed rigidly, without any deviation at Toyota. Despite such rule - bound rigidity, however, Toyota does not become a ‘command - control system’. It is able to retain the character of a learning organizationIn fact, many observers characterize it as a community of scientists carrying out several small experiments simultaneously. The design of the operating procedure is the key. Every principal must find an expression in the operating procedure – that is how it has an effect in the domain of action. Workers on the shop - floor, often in teams, design the ‘operating procedure’ jointly with the supervisor through a series of hypothesis that are proposed and validated or refuted through experiments in action. The rigid and detailed ‘operating procedure’ specification throws up problems of the very minute kind; while its resolution leads to a reframing of the procedure and specifications. This inter - temporal change (or flexibility) of the specification (or operating procedure) is done at the lowest level of the organization; i.e. closest to the site of action. One implication of this arrangement is that system design can no longer be rationally optimal and standardized across the organization. It is quite common to find different work norms in contiguous assembly lines, because each might have faced a different set of problems and devised different counter - measures to tackle it. Design of the coordinating process that essentially imposes the discipline that is required in large - scale complex manufacturing systems is therefore customized to variations in man - machine context of the site of action. It evolves through numerous points of negotiation throughout the organization. It implies then that the higher levels of the hierarchy do not exercise the power of the fiat in setting work rules, for such work rules are no longer a standard set across the whole organization. It might be interesting to go through the basic Toyota philosophy that underlines its system designing practices. The notion of the ideal production system in Toyota embraces the following -‘the ability to deliver just - in - time (or on demand) a customer order in the exact specification demanded, in a batch size of one (and hence an infinite proliferation of variants, models and specifications), defect - free, without wastage of material, labour, energy or motion in a safe and (physically and emotionally) fulfilling production environment’. It did not embrace the concept of a standardized product that can be cheap by giving up variations. Preserving consumption variety was seen, in fact, as one mode of serving society. It is interesting to note that the articulation of the Toyota philosophy was made around roughly the same time that the Fordist system was establishing itself in the US automotive industry. What can be best defended as the asset which Toyota model of production leverages to give the vast range of models in a defect - free fashion?
 ....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ....
MCQ-> Read the following passage carefully and answer the questions given. Certain words have been given in bold to help you locate them while answering some of the questions.We are told that economy is growing and that such growth benefits all of us. However, what you see is not what you always get. Most people are experiencing declining economic security in response to the problems of the global system, many communities have turned to Local Exchange Systems (LESs) to help regain some control over their economic situations.Local exchange systems come in many forms. They often involve the creation of a local currency, or a system of bartering labour, or trading of agricultural products as a means of supporting the region in which they are traded. Such a system helps preserve the viability of local economies.Local currencies allow communities to diversify their economies, reinvest resources back into their region and reduce dependence on the highly concentrated and unstable global economy. Each local currency system serves as an exchange bank for skills and resources that Individuals in the community are willing to trade. Whether in the form of paper money, service credits, or other units, a local currency facilitates the exchange of services and resources among the members of a community.By providing incentives for local trade, communities help their small businesses and reduce underemployment by providing the jobs within the community. In addition, the local exchange of food and seeds promotes environmental conservation and community food security. Local food production reduces wasteful transportation and promotes self-reliance and genetic diversity. Each transaction within a local exchange system strengthens the community fabric as neighbours interact and meet one another.There are over 1,000 local change programs worldwide more than 30 local paper currencies in North America and at least 800 Local Exchange Trading Systems (LETS) throughout Europe. New Zealand and Australia Local Exchange Systems vary and evolve in accordance with the needs and circumstances of the local area. This diversity is critical to the success of the local currencies. For instance, a bank in rural Massachusetts refused to lend a fanner the money needed to make it through the winter. In response, the farmer decided to print his own money Berkshire Farm Preserve Notes. In winter, customers buy the notes for $9 and they may redeem them in the summer for $10 worth of vegetables. The system enabled the community to help a farm family after being abandoned by the centralised monetary system. As small family farms continue to disappear at an alarming rate, local currencies provide tools for communities to bind together, support their local food growers and maintain their local food suppliers.Local Exchange Systems are not limited to developed countries.Rural areas of Asia, Latin America and Africa have offered some of the most effective and important programs, by adopting agriculture-based systems of exchange rather than monetary ones. In order to preserve genetic diversity, economic security and avoid dependence on industrial seed and chemical companies, many villages have developed seed saving exchange banks. For example, the village women in Ladakh have begun to collect and exchange rare seeds selected for their ability to grow in a harsh mountain climate. This exchange system protects agriculture diversity while promoting self-reliance. There is no one blueprint for a local exchange system, which is exactly why they are successful vehicles for localisation and sustainability. They promote local economic diversity and regional self-reliance while responding to a region’s specific needs. Local exchange systems play a pivotal role in creating models for sustainable societies. They are an effective educational tool, raising awareness about the global financial system and local economic matters. Local exchange systems also demonstrate that tangible, creative solutions exist and that communities can empower themselves to address global problems.Which of the following is same in meaning as the word ‘LIMITED TO’ as used in the passage?
 ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions