1. Mineral matter, 'M' and ash percentage 'A' in coal are roughly related as





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->How much is the portion of the earth’s surface covered with water roughly?....
QA->If an officer is appointed to hold full charge of another post in addition to his own, he will be eligible for special allowance as a percentage of the minimum of the scale of pay of that post. This percentage shall not exceed:....
QA->If an officer is appointed to discharge the current duties of another post in addition to his own, he will be eligible for a special allowance as a percentage of the minimum of the scale of pay of the additional post. This percentage shall not exceed:....
QA->WHICH MINERAL IS KNOWN AS BROWN COAL....
QA->The central government has decided to sell up to how much percentage of the shares in Coal India Limited?....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
MCQ->Mineral matter, 'M' and ash percentage 'A' in coal are roughly related as....
MCQ-> The painter is now free to paint anything he chooses. There are scarcely any forbidden subjects, and today everybody is prepared o admit that a painting of some fruit can be as important as painting of a hero dying. The Impressionists did as much as anybody to win this previously unheard of freedom for the artist. Yet, by the next generation, painters began to abandon tie subject altogether, and began to paint abstract pictures. Today the majority of pictures painted are abstract.Is there a connection between these two developments? Has art gone abstract because the artist is embarrassed by his freedom? Is it that, because he is free to paint anything, he doesn’t know what to paint? Apologists for abstract art often talk of it as Inc art of maximum freedom. But could this be the freedom of the desert island? It would take too long to answer these questions properly. I believe there is a connection. Many things have encouraged the development of abstract art. Among them has been the artists’ wish to avoid the difficulties of finding subjects when all subjects are equally possible.I raise the matter now because I want to draw attention to the fact that the painter’s choice of a subject is a far more complicated question than it would at first seem. A subject does not start with what is put in front of the easel or with something which the painter happens to remember. A subject starts with the painter deciding he would like to paint such-and-such because for some reason or other he finds it meaningful. A subject begins when the artist selects something for special mention. (What makes it special or meaningful may seem to the artist to be purely visual — its colours or its form.) When the subject has been selected, the function of the painting itself is to communicate and justify the significance of that selection.It is often said today that subject matter is unimportant. But this is only a reaction against the excessively literary and moralistic interpretation of subject matter in the nineteenth century. In truth the subject is literally the beginning and end of a painting. The painting begins with a selection (I will paint this and not everything else in the world); it is finished when that selection is justified (now you can see all that I saw and felt in this and how it is more than merely itself).Thus, for a painting to succeed it is essential that the painter and his public agree about what is significant. The subject may have a personal meaning for the painter or individual spectator; but there must also be the possibility of their agreement on its general meaning. It is at this point that the culture of the society and period in question precedes the artist and his art. Renaissance art would have meant nothing to the Aztecs — and vice versa. If, to some extent, a few intellectuals can appreciate them both today it is because their culture is an historical one: its inspiration is history and therefore it can include within itself, in principle if not in every particular, all known developments to date.When culture is secure and certain of its values, it presents its artists with subjects. The general agreement about what is significant is so well established that the significance of a particular subject accrues and becomes traditional. This is true, for instance, of reeds and water in China, of the nude body in Renaissance, of the animal in Africa. Furthermore in such cultures the artist is unlikely to be a free agent: he will be employed for the sake of particular subjects, and the problem, as we have just described it, will not occur to him.When a culture is in a state of disintegration or transitions the freedom of the artist increases — but the question of subject matter becomes problematic for him: he, himself, has to choose for society. This was at the basis of all the increasing crises in European art during the nineteenth century. It is too often forgotten how any of the art scandals of that time were provoked by the choice of subject (Gericault, Courbet, Daumier, Degas, Lautrec, Van Gogh, etc.).By the end of the nineteenth century there were, roughly speaking, two ways in which the painter could meet this challenge of deciding what to paint and so choosing for society. Either he identified himself with the people and so allowed their lives to dictate his subjects to him or he had to find his subjects within himself as painter. By people I mean everybody except the, bourgeoisie. Many painters did of course work for the bourgeoisie according to their copy-book of approved subjects, but all of them, filling the Salon and the Royal Academy year after year, are now forgotten, buried under the hypocrisy of those they served so sincerely.When a culture is insecure, the painter chooses his subject on the basis of:
 ....
MCQ->Mineral matter content (M) and ash content (A) in coal are approximately related as....
MCQ-> Please read the passage below and answer the questions that follow:It is sometimes said that consciousness is a mystery in the sense that we have no idea what it is. This is clearly not true. What could be better known to us than our own feelings and experiences? The mystery of consciousness is not what consciousness is, but why it is.Modern brain imaging techniques have provided us with a rich body of correlations between physical processes in the brain and the experiences had by the person whose brain it is. We know, for example, that a person undergoing stimulation in her or his ventromedial hypothalamus feels hunger. The problem is that no one knows why these correlations hold. It seems perfectly conceivable that ventromedial hypothalamus stimulation could do its job in the brain without giving rise to any kind of feeling at all. No one has even the beginnings of an explanation of why some physical systems, such as the human brain, have experiences. This is the difficulty David Chalmers famously called ‘the hard problem of consciousness’.Materialists hope that we will one day be able to explain consciousness in purely physical terms. But this project now has a long history of failure. The problem with materialist approaches to the hard problem is that they always end up avoiding the issue by redefining what we mean by ‘consciousness’. They start off by declaring that they are going to solve the hard problem, to explain experience; but somewhere along the way they start using the word ‘consciousness’ to refer not to experience but to some complex behavioural functioning associated with experience, such as the ability of a person to monitor their internal states or to process information about the environment. Explaining complex behaviours is an important scientific endeavour. But the hard problem of consciousness cannot be solved by changing the subject. In spite of these difficulties, many scientists and philosophers maintain optimism that materialism will prevail. At every point in this glorious history, it is claimed, philosophers have declared that certain phenomena are too special to be explained by physical science - light, chemistry, life - only to be subsequently proven wrong by the relentless march of scientific progress.Before Galileo it was generally assumed that matter had sensory qualities: tomatoes were red, paprika was spicy, flowers were sweet smelling. How could an equation capture the taste of spicy paprika? And if sensory qualities can’t be captured in a mathematical vocabulary, it seemed to follow that a mathematical vocabulary could never capture the complete nature of matter. Galileo’s solution was to strip matter of its sensory qualities and put them in the soul (as we might put it, in the mind). The sweet smell isn’t really in the flowers, but in the soul (mind) of the person smelling them … Even colours for Galileo aren’t on the surfaces of the objects themselves, but in the soul of the person observing them. And if matter in itself has no sensory qualities, then it’s possible in principle to describe the material world in the purely quantitative vocabulary of mathematics. This was the birth of mathematical physics.But of course Galileo didn’t deny the existence of the sensory qualities. If Galileo were to time travel to the present day and be told that scientific materialists are having a problem explaining consciousness in purely physical terms, he would no doubt reply, “Of course they do, I created physical science by taking consciousness out of the physical world!”Which of the following statements captures the essence of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions