1. The location of centre of pressure, which defines the point of application of the total pressure force on the surface, can be calculated by applying the principle of moments according to which "sum of the moment of the resultant force about an axis is equal to the sum of the components about the same axis". The centre of pressure of a rectangular surface (of width 'w') immersed vertically in a static mass of fluid is at a depth of(where, y = depth of the liquid)



Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Name the economy in which people work according to the principle ‘from each according to his ability to each according to his needs’?....
QA->“Intensity of pressure at a point in a fluid at rest is same in all directions”, this law is :....
QA->The length, breadth, height of a rectangular prism are 20cm, 15cm, and 10 cm respectively. Its whole surface area will be :....
QA->A static member function can have access to:....
QA->A computer with a 32 bit wide data bus implements its memory using 8 K x 8 static RAM chips. The smallest memory that this computer can have is:....
MCQ->The location of centre of pressure, which defines the point of application of the total pressure force on the surface, can be calculated by applying the principle of moments according to which "sum of the moment of the resultant force about an axis is equal to the sum of the components about the same axis". The centre of pressure of a rectangular surface (of width 'w') immersed vertically in a static mass of fluid is at a depth of(where, y = depth of the liquid)....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->Point D is in which direction with respect to Point B? I) Point A is to the west of Point B. Point C is to the north of Point B. Point D is to the south of Point C. II) Point G is to the south of Point D. Point G is 4m. from Point B. Point D is 9m. from point B. III) Point A is to the west of Point B. Point B is exactly midway between Points A and E. Point F is to the south of Point E. Point D is to the west of Point F.....
MCQ-> Each of the questions below consists of a question andtwo statements numbered I and II given below it. You have to decide whether the data provided in the statements are suf icient to answer the question. Read both the statements and - Give answer a: if the data in Statement I alone are sufficient to answer the question, while the data in Statement II alone are not sufficient to answer the question. Give answer b: if the data in Statement II alone are sufficient to answer the question, while the data in Statement I alone are not sufficient to answer the question. Give answer c: if the data either in Statement I alone or in Statement II alone are sufficient to answer the question. Give answer d: if the data even in both Statements I and II together are not sufficient to answer the question. Give answer e: if the data in both Statements I and II together are necessary to answer the question. What is the position of point F with respect to point I ? I. Point G is 5 km east of point F. Point S is 5 km north of point G. Point H is the mid point of points G and S. Point I is to the south of point H in such a manner that point G is the mid-point of points H and I. II. Point A is 10 km east of point F. Point B is 5 km south of point A. Point H is the midpoint of points A and B. Point I is 5 km south of point H. Point I is to the east of point L at a distance of 5 km.....
MCQ->The total pressure on a horizontally immersed surface is (where w = Specific weight of the liquid, A = Area of the immersed surface, and x = Depth of the centre of gravity of the immersed surface from the liquid surface)....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions