1. A cane sugar factory having sugar production rate of 10 tons/day will produce about __________ tons/day of bagasse (after consumption by the factory for heating etc.).





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Bagasse; a by-product of sugar manufacturing industry; is used for the production of which thing?....
QA->Bagasse, a by-product of sugar manufacturing industry, is used for the production of which thing?....
QA->The osmotic pressure of 5% solution of cane sugar at 1500 C (molecular mass of sugar=342) is:....
QA->Kerala-based private sector lender Federal Bank is openingincubation centres for startups in __________ and __________.....
QA->WHICH ALLOY IS USED FOR MAKING HEATING ELEMENTS IN ELECTRIC HEATING DEVICES....
MCQ-> "All raw sugar comes to us this way. You see, it is about the color of maple or brown sugar, but it is not nearly so pure, for it has a great deal of dirt mixed with it when we first get it." "Where does it come from?" inquired Bob."Largely from the plantations of Cuba and Porto Rico. Toward the end of the year we also get raw sugar from Java, and by the time this is refined and ready for the market the new crop from the West Indies comes along. In addition to this we get consignments from the Philippine Islands, the Hawaiian Islands, South America, Formosa, and Egypt. I suppose it is quite unnecessary to tell you young men anything of how the cane is grown; of course you know all that.""I don't believe we do, except in a general way," Bob admitted honestly. "I am ashamed to be so green about a thing at which Dad has been working for years. I don't know why I never asked about it before. I guess I never was interested. I simply took it for granted.""That's the way with most of us," was the superintendent's kindly answer. "We accept many things in the world without actually knowing much about them, and it is not until something brings our ignorance before us that we take the pains to focus our attention and learn about them. So do not be ashamed that you do not know about sugar raising; I didn't  when I was your age. Suppose, then, I give you a little idea of what happens before this raw sugar can come to us.""I wish you would," exclaimed both boys in a breath."Probably in your school geographies you have seen pictures of sugar-cane and know that it is a tall perennial not unlike our Indian corn in appearance; it has broad, flat leaves that sometimes measure as many as three feet in length, and often the stalk itself is twenty feet high. This stalk is jointed like a bamboo pole, the joints being about three inches apart near the roots and increasing in distance the higher one gets from the ground.""How do they plant it?" Bob asked."It can be planted from seed, but this method takes much time and patience; the usual way is to plant it from cuttings, or slips. The first growth from these cuttings is called plant cane; after these are taken off the roots send out ratoons or shoots from which the crop of one or two years, and sometimes longer, is taken. If the soil is not rich and moist replanting is more frequently necessary and in places like Louisiana, where there is annual frost, planting must be done each year. When the cane is ripe it is cut and brought from the field to a central sugar mill, where heavy iron rollers crush from it all the juice. This liquid drips through into troughs from which it is carried to evaporators where the water portion of the sap is eliminated and the juice left; you would be surprised if you were to see this liquid. It looks like nothing so much as the soapy, bluish gray dish-water that is left in the pan after the dishes have been washed.""A tempting picture!" Van exclaimed."I know it. Sugar isn't very attractive during its process of preparation," agreed Mr. Hennessey. "The sweet liquid left after the water has been extracted is then poured into vacuum pans to be boiled until the crystals form in it, after which it is put into whirling machines, called centrifugal machines that separate the dry sugar from the syrup with which it is mixed. This syrup is later boiled into molasses. The sugar is then dried and packed in these burlap sacks such as you see here, or in hogsheads, and shipped to refineries to be cleansed and whitened.""Isn't any of the sugar refined in the places where it grows?" queried Bob."Practically none. Large refining plants are too expensive to be erected everywhere; it therefore seems better that they should be built in our large cities, where the shipping facilities are good not only for receiving sugar in its raw state but for distributing it after it has been refined and is ready for sale. Here, too, machinery can more easily be bought and the business handled with less difficulty." Which one of the following is not a essential condition for setting up sugar refining plants?
 ....
MCQ->A cane sugar factory having sugar production rate of 10 tons/day will produce about __________ tons/day of bagasse (after consumption by the factory for heating etc.).....
MCQ->There are five energy drinks - Red, Moto, Energy, Lion and Bull containing different range of sugar content. Moto having sugar content more than all other drinks. Energy having the sugar content only more than the Lion. Bull is not having sugar content more than the Red. Which of the following drink having the second most sugar content?....
MCQ-> Read the following passage carefully and answer the questions given. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. From a technical and economic perspective, many assessments have highlighted the presence of cost-effective opportunities to reduce energy use in buildings. However several bodies note the significance of multiple barriers that prevent the take-up of energy efficiency measures in buildings. These include lack of awareness and concern, limited access to reliable information from trusted sources, fear about risk, disruption and other ‘transaction costs’ concerns about up-front costs and inadequate access to suitably priced finance, a lack of confidence in suppliers and technologies and the presence of split incentives between landlords and tenants. The widespread presence of these barriers led experts to predict thatwithout a concerted push from policy, two-thirds of the economically viable potential to improve energy efficiency will remain unexploited by 2035. These barriers are albatross around the neck that represent a classic market failure and a basis for governmental intervention. While these measurements focus on the technical, financial or economic barriers preventing the take-up of energy efficiency options in buildings, others emphasise the significance of the often deeply embedded social practices that shape energy use in buildings. These analyses focus not on the preferences and rationalities that might shape individual behaviours, but on the ‘entangled’ cultural practices, norms, values and routines that underpin domestic energy use. Focusing on the practice-related aspects of consumption generates very different conceptual framings and policy prescriptions than those that emerge from more traditional or mainstream perspectives. But the underlying case for government intervention to help to promote retrofit and the diffusion of more energy efficient particles is still apparent, even though the forms of intervention advocated are often very different to those that emerge from a more technical or economic perspective. Based on the recognition of the multiple barriers to change and the social, economic and environmental benefits that could be realised if they were overcome, government support for retrofit (renovating existing infrastructure to make it more energy efficient) has been widespread. Retrofit programmes have been supported and adopted in diverse forms in many setting and their ability to recruit householders and then to impact their energy use has been discussed quite extensively. Frequently, these discussions have criticised the extent to which retrofit schemes rely on incentives and the provision of new technologies to change behaviour whilst ignoring the many other factors that might limit either participation in the schemes or their impact on the behaviours and prac-tices that shape domestic energy use. These factors are obviously central to the success of retrofit schemes, but evaluations of different schemes have found that despite these they can still have significant impacts. Few experts that the best estimate of the gap between the technical potential and the actual in-situ performance of energy efficiency measures is 50%, with 35% coming from performance gaps and 15% coming from ‘comfort taking’ or direct rebound effects. They further suggest that the direct rebound effect of energy efficiency measures related to household heating is Ilkley to be less than 30% while rebound effects for various domestic energy efficiency measures vary from 5 to 15% and arise mostly from indirect effects (i.e., where savings from energy efficiency lead to increased demand for goods and services). Other analyses also note that the gap between technical potential and actual performance is likely to vary by measure, with the range extending from 0% for measures such as solar water heating to 50% for measures such as improved heating controls. And others note that levels of comfort taking are likely to vary according to the levels of consumption and fuel poverty in the sample of homes where insulation is installed, with the range extending from 30% when considering homes across all income groups to around 60% when considering only lower income homes. The scale of these gapsis significant because it materially affects the impacts of retrofit schemes and expectations and perceptions of these impacts go on to influence levels of political, financial and public support for these schemes. The literature on retrofit highlights the presence of multiple barriers to change and the need for government support, if these are to be overcome. Although much has been written on the extent to which different forms of support enable the wider take-up of domestic energy efficiency measures, behaviours and practices, various areas of contestation remain and there is still an absence of robust ex-post evidence on the extent to which these schemes actually do lead to the social, economic and environmental benefits that are widely claimed.Which of the following is most nearly the OPPOSITE in meaning to the word ‘CONCERTED’ as used in the passage ?
 ....
MCQ-> A passage is given with 5 questions following it. Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it.Modern civilisation is completely dependent on energy, which has therefore to be abundant and also economical. About 85% of the world's energy is supplied by oil, coal and natural gas while nuclear, hydro, wind and solar power and biomass supply the rest. Coal, nuclear and hydro are used primarily to generate electricity while natural gas is widely used for heating. Biomass is used both for heating and cooking. The wind and solar power is the future's hope as they are sustainable energy sources. Oil powers almost all machines that move and that makes oil uniquely versatile. Oil powered airplanes carry 500 people across the widest oceans at nearly the speed of sound. Oil powered machines produce and transport food. Oil powered machines are ubiquitous. Clearly, we live in the age of oil but it is drawing to a close. According to data available if oil production remains constant until it's gone, there is enough to last 42 years. Oil wells will produce less as they become depleted, which will make it impossible to keep production constant. Similarly natural gas and coal will last another 61 years and 133 years respectively. Naturally, as they become scarce, they become expensive, leading to a worldwide energy crisis. If we are to survive on this planet, we have to make a transition to sustainable energy sources. The transition may be willy-nilly or planned - the choice is ours. The dawning era of limited and expensive energy will be very difficult for everyone on earth but will be even more difficult if it is not anticipated. It is of utmost importance that the public and policymakers understand the global energy crisis and act in tandem to ensure that the species 'homo sapiens' does not become extinct.The theme of the passage is
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions