1. A class implements two interfaces each containing three methods. The class contains no instance data. Which of the following correctly indicate the size of the object created from this class?






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
QA->A computer with a 32 bit wide data bus implements its memory using 8 K x 8 static RAM chips. The smallest memory that this computer can have is:....
QA->During the solar eclipse, which of the following represents the relative position of the sun, moon an earth correctly?....
QA->During the solar eclipse, which of the following represents the relative position of the sun, moon and earth correctly:....
QA->Name thePolar Satellite Launch Vehicle carrying three satellites from India, three fromAlgeria and one each from Canada and the US from Sriharikota in Andhra Pradesh?....
MCQ->A class implements two interfaces each containing three methods. The class contains no instance data. Which of the following correctly indicate the size of the object created from this class?....
MCQ-> Analyse the following passage and provide appropriate answers for the follow. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.According to Popper, the statement "Scientific beliefs are universal in character" implies that....
MCQ->Which of the following statements are correct? Instance members of a class can be accessed only through an object of that class. A class can contain only instance data and instance member function. All objects created from a class will occupy equal number of bytes in memory. A class can contain Friend functions. A class is a blueprint or a template according to which objects are created.....
MCQ->interface Base { boolean m1 (); byte m2(short s); } which two code fragments will compile? interface Base2 implements Base {} abstract class Class2 extends Base { public boolean m1(){ return true; }} abstract class Class2 implements Base {} abstract class Class2 implements Base { public boolean m1(){ return (7 > 4); }} abstract class Class2 implements Base { protected boolean m1(){ return (5 > 7) }}....
MCQ->A person standing on the ground at point A saw an object at point B on the ground at a distance of 600 meters. The object started flying towards him at an angle of 30° with the ground. The person saw the object for the second time at point C flying at 30° angle with him. At point C, the object changed direction and continued flying upwards. The person saw the object for the third time when the object was directly above him. The object was flying at a constant speed of 10 kmph. Find the angle at which the object was flying after the person saw it for the second time. You may use additional statement(s) if required. Statement I: After changing direction the object took 3 more minutes than it had taken before. Statement II: After changing direction the object travelled an additional 200√3 meters. Which of the following is the correct option?....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions