1. A. Traffic congestion increases carbon monoxide in the environment.B. Increase in carbon monoxide is hazardous to health.C. Traffic congestion is hazardous to health.D. Some traffic congestion does not cause increased carbon monoxide.E. Some traffic congestion is not hazardous to health.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->What does increase in carbon dioxide in atmosphere cause?....
QA->If the Kinetic Energy of a body is increased by 300%; how much will its momentum increase?....
QA->If the momentum of a body is increased by 50%; how much will its K.E. will increase?....
QA->If the Kinetic Energy of a body is increased by 300%, how much will its momentum increase?....
QA->If the momentum of a body is increased by 50%, how much will its K.E. will increase?....
MCQ->A. Traffic congestion increases carbon monoxide in the environment.B. Increase in carbon monoxide is hazardous to health.C. Traffic congestion is hazardous to health.D. Some traffic congestion does not cause increased carbon monoxide.E. Some traffic congestion is not hazardous to health.....
MCQ-> Read the following passage to answer the given questions based on it. Some words/ phrases are printed in ‘’bold’’ to help you locate them while answering some of the questions.The e-waste (Management of Handling) Rules, 2011 notified by the Ministry of Environment and Forests, have the potential to turn a growing problem into a developmental opportunity. With almost half-a-year to go before the rules take effect, there is enough time to create necessary infrastructure for collection, dismantling, and recycling of electronic waste. The focus must be on sincere and efficient implementation.Only decisive action can reduce the pollution and health costs associated with India’s hazardous waste recycling industry. If India can achieve a transformation, it will be creating a whole new employment sector that provides good wages and working conditions for tens of thousands. The legacy response of the States to even the basic law on urban waste , the Municipal Solid Wastes (Management and Handling) Rules, has been one of the indifference many cities continue to simply burn the garbage or dump it in lakes. With the emphasis now on segregation of waste at source and recovery of materials, it should be feasible to implement ‘’both sets of rules’’ efficiently. A welcome feature of the new e-waste rule is emphasis on extended producer responsibility. In, other words, producers must take responsibility for the disposal of end-of-life products. For this provision to work, they must ensure that consumers who sell scrap get some form of financial incentive. The e-waste rules, which derive from those pertaining to hazardous waste, are scheduled to come into force on May 1, 2012. Sounds as they are, the task of scientifically disposing a few hundred, thousand tonnes of trash electronics annually depends heavily on a system of oversight by State Pollution Control Boards (PCBs). Unfortunately, most PCBs remain unaccountable and often lack the resources for active enforcement. It must be pointed out that, although agencies handling e-waste must obtain environmental ‘’clearances’’ and be authorised and registered by the PCBs even under the Hazardous Wastes (Management, Handling and Transboundary Movements) Rules, 2008, there has been little practical impact. Over 95 per cent of electronic waste is collected and recycled by the informal sector. The way forward is for the PCBs to be made accountable for enforcement of the e-waste rules, and the levy of penalties under environmental laws. Clearly, the first order priority is to create a system that will absorb the 80000-strong workforce in the informal sector into the proposed scheme for scientific recycling. Facilities must be created to upgrade the skills of these workers through training and their occupational health must be ensured. Recycling of e-waste is one of the biggest challenges today. In such a time, when globalization and information technology are growing at a pace which could only be imagined few years back, e-waste and its hazards have become more prominent over a period of time and should be given immediate attention.What according to the passage is important now for e-waste management?
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/expressions are given in bold in the passage to help you locate them while answering some of the questions.Radically changing monsoon patterns, reduction in the winter rice harvest and a quantum increase in respiratory diseases-all part of the environmental doomsday scenario which is reportedly playing out in South Asia. According to a United Nations Environment Programme report, a deadly three-km deep blantant of pollution comprising a fearsome cocktail of ash, acids, aerosols and other particles has enveloped this region. For India, already struggling to cope with a drought. the implications of this are devastating and further crop failure will amount to a life and death question for many Indians. The increase in premature deaths will have adverse social and economic consequences and a rise in morbidities will place an unbearable burden on our rumbling health system And there is no one to blame but ourselves. Both official and corporate India has always been allergic to any mention of clean technology. Most mechanical two wheelers roll off the assembly line without proper pollution control systems. Little effort is made R & D on simple technologies, which could make a vital difference to people’s lives and the environment. However, while there is no denying that South Asia must clean up its act, skeptics might questions the timing of the haze report. The Johannesburg meet on Rio+ 10 is just two weeks away and the state is set for the usual battle between the developing world and the West, particularly the U. S. President Mr. Bush has adamantly refused to sign any protocol, which would mean a change in American consumption U. N. environment report will likely find a place in the U. S. arsenal as it points an accusing finger countries like India and China. Yet the U.S. can hardly deny its own dubious role in the matter of erasing trading quotas. Richer countries can simply buy up excess credits from poorer countries and continue to pollute. Rather than try to get the better of developing countries, who undoubtedly, have taken up environmental shortcuts in their bid to catch up with the West, the U. S. should take a look at the environment profligacy, which is going on within. From opening up virgin territories for oil exploration to relaxing the standards for drinking water, Mr. Bush’s policies are not exactly beneficial-not even to Americans we realize that we are all in this together and that pollution anywhere should be a global concern only be more tunnels at the end of the tunnel.Both official and corporate India is allergic to
 ....
MCQ-> Throughout human history the leading causes of death have been infection and trauma, Modem medicine has scored significant victories against both, and the major causes of ill health and death are now the chronic degenerative diseases, such as coronary artery disease, arthritis, osteoporosis, Alzheimer’s, macular degeneration, cataract and cancer. These have a long latency period before symptoms appear and a diagnosis is made. It follows that the majority of apparently healthy people are pre-ill.But are these conditions inevitably degenerative? A truly preventive medicine that focused on the pre-ill, analyzing the metabolic errors which lead to clinical illness, might be able to correct them before the first symptom. Genetic risk factors are known for all the chronic degenerative diseases, and are important to the individuals who possess them. At the population level, however, migration studies confirm that these illnesses are linked for the most part to lifestyle factors — exercise, smoking and nutrition. Nutrition is the easiest of these to change, and the most versatile tool for affecting the metabolic changes needed to tilt the balance away from disease.Many national surveys reveal that malnutrition is common in developed countries. This is not the calorie and/or micronutrient deficiency associated with developing nations (type A malnutrition); but multiple micronutrient depletion, usually combined with calorific balance or excess (Type B malnutrition). The incidence and severity of Type B malnutrition will be shown to be worse if newer micronutrient groups such as the essential fatty acids, xanthophylls and falconoid are included in the surveys. Commonly ingested levels of these micronutrients seem to be far too low in many developed countries.There is now considerable evidence that Type B malnutrition is a major cause of chronic degenerative diseases. If this is the case, then t is logical to treat such diseases not with drugs but with multiple micronutrient repletion, or pharmaco-nutrition’. This can take the form of pills and capsules — ‘nutraceuticals’, or food formats known as ‘functional foods’, This approach has been neglected hitherto because it is relatively unprofitable for drug companies — the products are hard to patent — and it is a strategy which does not sit easily with modem medical interventionism. Over the last 100 years, the drug industry has invested huge sums in developing a range of subtle and powerful drugs to treat the many diseases we are subject to. Medical training is couched in pharmaceutical terms and this approach has provided us with an exceptional range of therapeutic tools in the treatment of disease and in acute medical emergencies. However, the pharmaceutical model has also created an unhealthy dependency culture, in which relatively few of us accept responsibility for maintaining our own health. Instead, we have handed over this responsibility to health professionals who know very little about health maintenance, or disease prevention.One problem for supporters of this argument is lack of the right kind of hard evidence. We have a wealth of epidemiological data linking dietary factors to health profiles/ disease risks, and a great deal of information on mechanism: how food factors interact with our biochemistry. But almost all intervention studies with micronutrients, with the notable exception of the omega 3 fatty acids, have so far produced conflicting or negative results. In other words, our science appears to have no predictive value. Does this invalidate the science? Or are we simply asking the wrong questions?Based on pharmaceutical thinking, most intervention studies have attempted to measure the impact of a single micronutrient on the incidence of disease. The classical approach says that if you give a compound formula to test subjects and obtain positive results, you cannot know which ingredient is exerting the benefit, so you must test each ingredient individually. But in the field of nutrition, this does not work. Each intervention on its own will hardly make enough difference to be measured. The best therapeutic response must therefore combine micronutrients to normalise our internal physiology. So do we need to analyse each individual’s nutritional status and then tailor a formula specifically for him or her? While we do not have the resources to analyze millions of individual cases, there is no need to do so. The vast majority of people are consuming suboptimal amounts of most micronutrients, and most of the micronutrients concerned are very safe. Accordingly, a comprehensive and universal program of micronutrient support is probably the most cost-effective and safest way of improving the general health of the nation.The author recommends micronutrient-repletion for large-scale treatment of chronic degenerative diseases because
 ....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions