1. __________ are made up of sclerenchymatous cells. These are generally absent in the primary phloem but are found in the secondary phloem.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Kerala-based private sector lender Federal Bank is openingincubation centres for startups in __________ and __________.....
QA->Young innovator from India who has been selected for a prestigious United Nations award in recognition of his "Open Curriculum", an online platform for local educational material for standard, primary and secondary schooling?....
QA->A transformer has a turn ration of 1:If the current in the primary has a peak value of 5A, then the current in the secondary will be :....
QA->Which cytoplasmic organelles are treated as prokaryotic cells within the eukaryotic cells?....
QA->The chief function of phloem is the conduction of…?....
MCQ-> The membrane-bound nucleus is the most prominent feature of the eukaryotic cell. Schleiden and Schwann, when setting forth the cell doctrine in the 1830s, considered that it had a central role in growth and development. Their belief has been fully supported even though they had only vague notions as to what that role might be, and how the role was to be expressed in some cellular action. The membraneless nuclear area of the prokaryotic cell, with its tangle of fine threads, is now known to play a similar role.Some cells, like the sieve tubes of vascular plants and the red blood cells of mammals, do not possess nuclei during the greater part of their existence, although they had nuclei when in a less differentiated state. Such cells can no longer divide and their life span is limited Other cells are regularly multinucleate. Some, like the cells of striated muscles or the latex vessels of higher plants, become so through cell fusion. Some, like the unicellular protozoan paramecium, are normally binucleate, one of the nuclei serving as a source of hereditary information for the next generation, the other governing the day-to-day metabolic activities of the cell. Still other organisms, such as some fungi, are multinucleate because cross walls, dividing the mycelium into specific cells, are absent or irregularly present. The uninucleate situation, however, is typical for the vast majority of cells, and it would appear that this is the most efficient and most economical manner of partitioning living substance into manageable units. This point of view is given credence not only by the prevalence of uninucleate cells, but because for each kind of cell there is a ratio maintained between the volume of the nucleus and that of the cytoplasm. If we think of the nucleus as the control centre of the cell, this would suggest that for a given kind of cell performing a given kind of work, one nucleus can ‘take care of’ a specific volume of cytoplasm and keep it in functioning order. In terms of material and energy, this must mean providing the kind of information needed to keep flow of materials and energy moving at the correct rate and in the proper channels. With the multitude of enzymes in the cell, materials and energy can of course be channelled in a multitude of ways; it is the function of some information molecules to make channels of use more preferred than others at any given time. How this regulatory control is exercised is not entirely clear.The nucleus is generally a rounded body. In plant cells, however, where the centre of the cell is often occupied by a large vacuole, the nucleus may be pushed against the cell wall, causing it to assume a lens shape. In some white blood cells, such as polymorphonucleated leukocytes, and in cells of the spinning gland of some insects and spiders, the nucleus is very much lobed The reason for this is not clear, but it may relate to the fact that for a given volume of nucleus, a lobate form provides a much greater surface area for nuclear-cytoplasmic exchanges, possibly affecting both the rate and the amount of metabolic reactions. The nucleus, whatever its shape, is segregated from the cytoplasm by a double membrane, the nuclear envelope, with the two membranes separated from each other by a perinuclear space of varying width. The envelope is absent only during the time of cell division, and then just for a brief period The outer membrane is often continuous with the membranes of the endoplasmic reticulum, a possible retention of an earlier relationship, since the envelope, at least in part, is formed at the end cell division by coalescing fragments of the endoplasmic reticulum. The cytoplasmic side of the nucleus is frequently coated with ribosomes, another fact that stresses the similarity and relation of the nuclear envelope to the endoplasmic reticulum. The inner membrane seems to posses a crystalline layer where it abuts the nucleoplasm, but its function remains to be determined.Everything that passes between the cytoplasm and the nucleus in the eukaryotic cell must transverse the nuclear envelope. This includes some fairly large molecules as well as bodies such as ribosomes, which measure about 25 mm in diameter. Some passageway is, therefore, obviously necessary since there is no indication of dissolution of the nuclear envelope in order to make such movement possible. The nuclear pores appear to be reasonable candidates for such passageways. In plant cells these are irregularly, rather sparsely distributed over the surface of the nucleus, but in the amphibian oocyte, for example, the pores are numerous, regularly arranged, and octagonal and are formed by the fusion of the outer and inner membrane.Which of the following kinds of cells never have a nuclei?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->__________ are made up of sclerenchymatous cells. These are generally absent in the primary phloem but are found in the secondary phloem.....
MCQ-> Last fortnight, news of a significant development was tucked away in the inside pages of newspapers. The government finally tabled a bill in Parliament seeking to make primary education a fundamental right. A fortnight earlier, a Delhi-based newspaper had carried a report about a three-month interruption in the Delhi Government's ‘Education for All’ programme. The report made for distressing reading. It said that literacy centres across the city were closed down, volunteers beaten up and enrolment registers burnt. All because the state government had, earlier this year, made participation in the programme mandatory for teachers in government schools. The routine denials were issued and there probably was a wee bit of exaggeration in the report.But it still is a pointer to the enormity of the task at hand. That economic development will be inherently unstable unless it is built on a solid base of education, specially primary education, has been said so often that it is in danger of becoming a platitude. Nor does India's abysmal record in the field need much reiteration. Nearly 30 million children in the six to ten age group do not go to school — reason enough to make primary education not only compulsory but a fundamental right. But is that the Explanation? More importantly, will it work? Or will it remain a mere token, like the laws providing for compulsory primary education? It is now widely known that 14 states and four Union Territories have this law on their statute books.Believe it or not, the list actually includes Bihar, Madhya Pradesh (MP) and Rajasthan, where literacy and education levels are miles below the national average. A number of states have not even notified the compulsory education law. This is not to belittle the decision to make education a fundamental right. As a statement of political will, a commitment by the decision-makers, its importance cannot be undervalued. Once this commitment is clear, a lot of other things like resource allocation will naturally fall into place. But the task of universalizing elementary education (UEE) is complicated by various socio-economic and cultural factors which vary from region to region and within regions. If India's record continues to appall, it is because these intricacies have not been adequately understood by the planners and administrators.The trouble has been that education policy has been designed by grizzled mandarins ensconced in Delhi and is totally out of touch with the ground reality. The key then is to decentralise education planning and implementation. What's also needed is greater community involvement in the whole process. Only then can school timings be adjusted for convenience, school children given a curriculum they can relate to and teachers made accountable. For proof, one has only to look at the success of the district primary education programme, which was launched in 1994. It has met with a fair degree of success in the 122 districts it covers. Here the village community is involved in all aspects of education — allocating finances to supervising teachers to fixing school timings and developing curriculum and textbooks — through district planning teams. Teachers are also involved in the planning and implementation process and are given small grants to develop teaching and learning material, vastly improving motivational levels. The consequent improvement in the quality of education generates increased demand for education.But for this demand to be generated, quality will first have to be improved. In MP, the village panchayats are responsible for not only constructing and maintaining primary schools but also managing scholarships, besides organising non-formal education. How well this works in practice remains to be seen (though the department claims the schemes are working very well) but the decision to empower panchayats with such powers is itself a significant development. Unfortunately, the Panchayat Raj Act has not been notified in many states.After all, delegating powers to the panchayats is not looked upon too kindly by vested interests. More specifically, by politicians, since decentralisation of education administration takes away from them the power of transfer, which they use to grant favours and build up a support base. But if the political leadership can push through the bill to make education a fundamental right, it should also be able to persuade the states to implement the laws on Panchayat Raj. For, UEE cannot be achieved without decentralisation. Of course, this will have to be accompanied by proper supervision and adequate training of those involved in the administration of education. But the devolution of powers to the local bodies has to come first.One of the problems plaguing the education system in India is
 ....
MCQ-> Based on the information answer the questions which follow.A consultant to Department of Commerce. Government of Bianca has suggested 30 products which have high export potential. Dora an entrepreneur and prospective exporter notices that these products can be grouped in three ways- Machine made goods, Handmade goods and Intermediate goods. Among these 30 products some products are both machine made and intermediate goods but not handmade goods. Few products have a combination of handmade and machine made goods but not intermediate goods. Some products are handmade and intermediate goods but not machine made goods. Further it is seen that handmade-machine made goods are I less than machine made-intermediate goods. Similarly the total number of handmade-intermediate goods is I less than machine made-intermediate goods. There are just 4 products common across all product groups i.e. machine made-handmade- intermediate goods. Apart from this the number of only handmade goods is same as only machine made goods but less than only intermediate goods. Each product group/combination has at least one product. Dora prefers to export machine made goods and avoid hand made goods. She finds out that only handmade goods are twice the machine made-intermediate goods and the number of only intermediate goods is an even number. Whereas her close friend Sara prefers to export intermediate goods followed by only handmade goods.Sara and Dora prefer to export as many common products as possible in order to understand the regulatory conditions. Keeping their preferences intact, what is the maximum number of common products which can be exported by both of them?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions