1. A passage is given with 5 questions following it. Read the passage carefully and choose the best answer to each question out of the four alternatives.Manja, or the glass-coated string used for flying kites, not only poses threat to humans, animals and birds but also to trees. A study by the country's oldest botanical garden has revealed that it poses a great threat to trees. But how can a snapped string struck in a tree kill the tree? Apparently, it does so by allying with the creepers in the garden.A research paper by three scientists of the Acharya Jagdish Chandra Bose Indian Botanic Garden, located in West Bengal's Howrah district, illustrates in detail how the manja, in collusion with climbers, does the damage. "The abandoned, torn kite strings act as an excellent primary supporting platform for the tender climbers, giving easy passage to reach the top of the trees. Lateral branches from the top of the climber and other accessory branches from the ground reaches the top taking support of the first climber, completely covers the treetop, thus inhibiting the penetration of sunlight," says the research paper.Abandoned, torn kite strings stuck in trees benefits whom?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 01.44 am
    'The abandoned, torn kite strings act as an excellent primary supporting platform for the tender climbers, giving easy passage to reach the top of the trees'. This line implies that Creepers benefit from torn kite strings. Thus, Creepers is the correct answer.
Show Similar Question And Answers
QA->Acharya Jagdish Chandra Bose Indian Botanic Garden is located at:....
QA->In a club 70% members read English news papers and 75% members read Malayalam news papers, while 20% do not read both papers. If 325 members read both the news papers, then the total numbers in the club is .........?....
QA->A groupof scientists recently revealed that the Great Barrier Reef suffered from itsworst coral die-off ever recorded. Where is the Great Barrier Reef located?....
QA->National Botanical Garden (National Botanical Research Institute; NBRI) is situated in?....
QA->Auto reports can contain each of the following elements expect .......?[ a detail section ; a page footer ; a group header ]....
MCQ-> A passage is given with 5 questions following it. Read the passage carefully and choose the best answer to each question out of the four alternatives.Manja, or the glass-coated string used for flying kites, not only poses threat to humans, animals and birds but also to trees. A study by the country's oldest botanical garden has revealed that it poses a great threat to trees. But how can a snapped string struck in a tree kill the tree? Apparently, it does so by allying with the creepers in the garden.A research paper by three scientists of the Acharya Jagdish Chandra Bose Indian Botanic Garden, located in West Bengal's Howrah district, illustrates in detail how the manja, in collusion with climbers, does the damage. "The abandoned, torn kite strings act as an excellent primary supporting platform for the tender climbers, giving easy passage to reach the top of the trees. Lateral branches from the top of the climber and other accessory branches from the ground reaches the top taking support of the first climber, completely covers the treetop, thus inhibiting the penetration of sunlight," says the research paper.Abandoned, torn kite strings stuck in trees benefits whom? ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ....
MCQ-> Read the following passage and answer the questions. Passage: A new paper published by Rochman and her colleagues in February, in the journal Ecology, sifts through past research on marine debris to assess the true extent of the environmental threat. Plenty of studies have sounded alarm bells about the state of marine debris: Rochman and her colleagues set out to determine how many of those perceived risks are real Often. Rochman says, scientists will wrap up a paper by speculating about the broader impacts of what they've found. Maybe their study has shown that certain seabirds eat plastic bags, for example, and the paper goes on to warn that whole bird populations are at risk of dying out. "But the truth was that nobody had yet tested those perceived threats." Rochman says. "There wasn't a lot of information." Rochman and her colleagues examined more than a hundred papers on the impacts of marine debris that were published through 2013. Within each paper. they asked what threats scientists had studied-366 perceived threats in all and what they'd actually found. In 83 percent of cases, the perceived dangers of ocean trash were proven true. In most of the remaining cases. the working group found the studies too shoddy to draw conclusions from—they lacked a control group, for example. or used faulty statistics. Strikingly. Rochman says, only one well-designed study failed to find the effect it was looking for, an investigation of mussels ingesting microscopic plastic bits. The plastic moved from the mussels' stomachs to their bloodstreams. scientists found. and stayed there for weeks—but didn't seem to stress out the shellfish. A lot of ocean debris is "microplastic," or pieces smaller than five millimetres. These may be the beads from a facial scrub. fibres shed by synthetic clothing in the wash. or eroded remnants of larger debris. Compared to the number of studies investigating large-scale debris. Roclunan's group found little research on the effects of these tiny bits. There are also, she adds, a lot of open questions about the ways that ocean debris can lead to sea-creature death. Many studies have looked at how plastic affects an individual animal or that animal's tissues or cells, rather than whole populations. And in the lab, scientists often use higher concentrations of plastic than what's really in the ocean. None of that tells us how many birds or fish or sea turtles could die form plastic pollution or how deaths in one species could affect that animal's predators, or the rest of the ecosystem. "We need to be asking more ecologically relevant questions." Rothman says. Usually, scientists don't know how disasters like oil spills or nuclear meltdowns will affect the environment until after they've happened. she says. "We don't ask the right questions early enough." But if ecologists can understand how the slow-moving disaster of ocean garbage is affecting ecosystems. they might be able to prevent things from getting worse.Which ONE of the following conclusions based on the examination of the hundred-odd papers on marine debris and its ecological impact by Rachman and her colleagues is NOT CORRECT?
 ....
MCQ-> Read the passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Long time ago, in a forest, there lived a young antelope. He was fond of the fruits of a particular tree. In a village bordering the forest, there lived a hunter who captured and killed antelopes for various reasons. He used to set traps for animals under fruit­bearing trees. When the animal came to eat the fruit, it would be caught in the trap. He would then take it away and kill it for its meat. One day, while visiting the forest in search of game, the hunter happened to see the antelope under its favourite tree, eating fruit. He was delighted. ‘What a big, plump antelope!’ he thought. ‘I must catch him. I will get a lot of money from selling his meat.’ Thereafter, for many days, the hunter kept track of the antelope’s movements. He realised that the antelope was remarkably vigilant and fleet footed animal that it would be virtually impossible for him to track him down. However, he had a weakness for that particular tree. The crafty concluded that he could use this weakness to capture him. Early one morning, the hunter entered the forest with some logs of wood. He climbed the tree and put up a machan (platform used by hunters) on one of its branches by tying the logs together. Having set his trap at the foot of the tree, he then took up position on the machan and waited for the antelope. He strewed a lot of iy ,ovef mrui bts eo rn2thoeig6round beneath the 11.004.3, tree to conceal the trap and lure the antelope. Soon, the antelope came strolling along. He was very hungry and was eagerly looking forward to his usual breakfast of delicious ripe fruits. On the tree­top, the hunter, having sighted him, sat with bated breath, willing him to come closer and step into his trap. However, the antelope was no fool. As he neared the tree he stopped short. The number of fruits lying under the tree seemed considerably more than usual. Surely, something was amiss, decided the antelope. He paused just out of reach of the tree and carefully began examining the ground. Now, he saw what distinctly looked like a human footprint. Without going closer, he looked suspiciously at the tree. The hunter was well hidden in its thick foliage, nevertheless the antelope, on close scrutiny, was now sure that his suspicions had not been unfounded. He could see a corner of the machan peeping out of the leaves. Meanwhile the hunter was getting desperate. Suddenly, he had a brainwave. Let me try throwing some fruit at him,’ he thought. So the hunter plucked some choice fruits and hurled them in the direction of the antelope. Alas, instead of luring him closer, it only confirmed his fears! Raising his voice, he spoke in the direction of the tree —”Listen, my dear tree, until now you have always dropped your fruits on the earth. Today, you have started throwing them at me! This is the most unlikely action of yours and I’m not sure I like the change! Since you have changed your habits, I too will change mine. I will get my fruits from a different tree from now on­one that still acts like a tree!’ The hunter realised that the antelope had outsmarted him with his cleverness. Parting the leaves to reveal himself, he I grabbed his javelin and flung it wildly at the antelope. But the clever antelope was well prepared for any such action on his part. Giving a saucy chuckle, he leapt nimbly out of the harm’s way.As mentioned in the story, which of the following can be said about the hunter ?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions