1. For an atomic orbital, the quantum number ‘X’ represents its shape and the quantum number 'Y' represents its orientation. X,Y are respectively





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Name the unmanned resupply spacecraft developed by Orbital Sciences which reentered Earth"s atmosphere, marking the end of the highly successful cargo resupply demonstration mission Orbital conducted with its NASA partner?....
QA->Orbital interaction between the sigma bonds of a substituent group and a neighboring pi orbital is known as :....
QA->A school has only three classes comprised of 40, 50 and 60 students respectively. In these classes, 10%, 20% and 10% students respectively passed in the examinations. What is the percentage of students passed in the examination from the entire school?....
QA->Mirdha committee gave a new orientation to:....
QA->A quantum physicist worked with the Iranian Atomic Energy Commission who was killed in Bomb attack by unidentified assailants on November 29, 2010?....
MCQ->For an atomic orbital, the quantum number ‘X’ represents its shape and the quantum number 'Y' represents its orientation. X,Y are respectively....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the through that follow. "Whatever actions are done by an individual in different embodiments, Is] he reaps the fruit of those actions in those very bodies or embodiments (in future existences)". A belief in karma entails, among other things, a focus on long run consequences, i.e., a long term orientation. Such an orientation implies that people who believe in karma may be more honest with themselves in general and in setting expectations in particular--a hypothesis we examine here. This research is based on three simple premises. First, because lower expectations often lead to greater satisfaction, individuals in general, and especially those who are sensitive to the gap between performance and expectations, have the incentive to and actually do "strategically" lower their expectations. Second, individuals with a long term orientation are likely to be less inclined to lower expectations in the hope of temporarily feeling better. Third, long term orientation and the tendency to lower expectations are at least partially driven by cultural factors. In India, belief in karma, with its emphasis on a longer term orientation, will therefore to some extent counteract the tendency to lower expectations. The empirical results support our logic; those who believe more strongly in karma are less influenced by disconfirmation sensitivity and therefore have higher expectations. Consumers make choices based on expectations of how alternative options will perform (i.e., expected utility). Expectations about the quality of a product also play a central role in subsequent satisfaction. These expectations may be based on a number of factors including the quality of a typical brand in a category, advertised quality, and disconfirmation sensitivity. Recent evidence suggests that consumers, who are more disconfirmation sensitive (i.e., consumers who are more satisfied when products perform better than expected or more dissatisfied when products perform worse than expected) have lower expectations. However, there is little research concerning the role of culture-specific variables in expectation formation, particularly how they relate to the impact of disconfirmation sensitivity on consumer expectations."Future existences" in the first paragraph can refer to: 1. Human life, 5 years afterwards 2. Next birth in human form 3. Next birth in any embodiment Which of the following statement(s) is correct?....
MCQ-> I want to stress this personal helplessness we are all stricken with in the face of a system that has passed beyond our knowledge and control. To bring it nearer home, I propose that we switch off from the big things like empires and their wars to more familiar little things. Take pins for example! I do not know why it is that I so seldom use a pin when my wife cannot get on without boxes of them at hand; but it is so; and I will therefore take pins as being for some reason specially important to women.There was a time when pinmakers would buy the material; shape it; make the head and the point; ornament it; and take it to the market, and sell it and the making required skill in several operations. They not only knew how the thing was done from beginning to end, but could do it all by themselves. But they could not afford to sell you a paper of pins for the farthing. Pins cost so much that a woman's dress allowance was calling pin money.By the end of the 18th century Adam Smith boasted that it took 18 men to make a pin, each man doing a little bit of the job and passing the pin on to the next, and none of them being able to make a whole pin or to buy the materials or to sell it when it was made. The most you could say for them was that at least they had some idea of how it was made, though they could not make it. Now as this meant that they were clearly less capable and knowledgeable men than the old pin-makers, you may ask why Adam Smith boasted of it as a triumph of civilisation when its effect had so clearly a degrading effect. The reason was that by setting each man to do just one little bit of the work and nothing but that, over and over again, he became very quick at it. The men, it is said, could turn out nearly 5000 pins a day each; and thus pins became plentiful and cheap. The country was supposed to be richer because it had more pins, though it had turned capable men into mere machines doing their work without intelligence and being fed by the spare food of the capitalist just as an engine is fed with coals and oil. That was why the poet Goldsmith, who was a farsighted economist as well as a poet, complained that 'wealth accumulates, and men decay'.Nowadays Adam Smith's 18 men are as extinct as the diplodocus. The 18 flesh-and-blood men have been replaced by machines of steel which spout out pins by the hundred million. Even sticking them into pink papers is done by machinery. The result is that with the exception of a few people who design the machines, nobody knows how to make a pin or how a pin is made: that is to say, the modern worker in pin manufacture need not be one-tenth so intelligent, skilful and accomplished as the old pinmaker; and the only compensation we have for this deterioration is that pins are so cheap that a single pin has no expressible value at all. Even with a big profit stuck on to the cost-price you can buy dozens for a farthing; and pins are so recklessly thrown away and wasted that verses have to be written to persuade children (without success) that it is a sin to steal, if even it’s a pin.Many serious thinkers, like John Ruskin and William Morris, have been greatly troubled by this, just as Goldsmith was, and have asked whether we really believe that it is an advance in wealth to lose our skill and degrade our workers for the sake of being able to waste pins by the ton. We shall see later on, when we come to consider the Distribution of Leisure, that the cure for this is not to go back to the old free for higher work than pin-making or the like. But in the meantime the fact remains that the workers are now not able to make anything themselves even in little bits. They are ignorant and helpless, and cannot lift their finger to begin their day's work until it has all been arranged for them by their employer's who themselves do not understand the machines they buy, and simply pay other people to set them going by carrying out the machine maker's directions.The same is true for clothes. Earlier the whole work of making clothes, from the shearing of the sheep to the turning out of the finished and washed garment ready to put on, had to be done in the country by the men and women of the household, especially the women; so that to this day an unmarried woman is called a spinster. Nowadays nothing is left of all this but the sheep shearing; and even that, like the milking of cows, is being done by machinery, as the sewing is. Give a woman a sheep today and ask her to produce a woollen dress for you; and not only will she be quite unable to do it, but you are likely to find that she is not even aware of any connection between sheep and clothes. When she gets her clothes, which she does by buying them at the shop, she knows that there is a difference between wool and cotton and silk, between flannel and merino, perhaps even between stockinet and other wefts; but as to how they are made, or what they are made of, or how they came to be in the shop ready for her to buy, she knows hardly anything. And the shop assistant from whom she buys is no wiser. The people engaged in the making of them know even less; for many of them are too poor to have much choice of materials when they buy their own clothes.Thus the capitalist system has produced an almost universal ignorance of how things are made and done, whilst at the same time it has caused them to be made and done on a gigantic scale. We have to buy books and encyclopaedias to find out what it is we are doing all day; and as the books are written by people who are not doing it, and who get their information from other books, what they tell us is twenty to fifty years out of date knowledge and almost impractical today. And of course most of us are too tired of our work when we come home to want to read about it; what we need is cinema to take our minds off it and feel our imagination.It is a funny place, this word of capitalism, with its astonishing spread of education and enlightenment. There stand the thousands of property owners and the millions of wage workers, none of them able to make anything, none of them knowing what to do until somebody tells them, none of them having the least notion of how it is made that they find people paying them money, and things in the shops to buy with it. And when they travel they are surprised to find that savages and Esquimaux and villagers who have to make everything for themselves are more intelligent and resourceful! The wonder would be if they were anything else. We should die of idiocy through disuse of our mental faculties if we did not fill our heads with romantic nonsense out of illustrated newspapers and novels and plays and films. Such stuff keeps us alive, but it falsifies everything for us so absurdly that it leaves us more or less dangerous lunatics in the real world.Excuse my going on like this; but as I am a writer of books and plays myself, I know the folly and peril of it better than you do. And when I see that this moment of our utmost ignorance and helplessness, delusion and folly, has been stumbled on by the blind forces of capitalism as the moment for giving votes to everybody, so that the few wise women are hopelessly overruled by the thousands whose political minds, as far as they can be said to have any political minds at all, have been formed in the cinema, I realise that I had better stop writing plays for a while to discuss political and social realities in this book with those who are intelligent enough to listen to me.A suitable title to the passage would be
 ....
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 1We use the word culture quite casually when referring to a variety of thoughts and actions. I would like to begin my attempt to define cultures by a focus on three of its dictionary meanings that I think are significant to our understanding of the general term-culture. We often forget that it's more essential usage is as a verb rather than as a noun, since the noun follows froth the activities involved in the verb. Thus the verb, to culture, means to cultivate. This can include at least three activities: to artificially grow microscopic organisms; to improve and refine the customs, manners and activities of one's life; to give attention to the mind as part of what goes into the making of what we call civilization, or what was thought to be the highest culture. In short, one might argue that culture is the intervention of human effort in refining and redefining that which is natural, but that it gradually takes on other dimensions in the life of the individual, and even more in the interface between the individual and society. When speaking of society, this word also requires defining. Society, it has been said, is what emerges from a network of interactions between people that follow certain agreed upon and perceptible patterns. These arc determined by ideas of status, hierarchy and a sense of community governing the network. They are often, but not invariably, given a direction by those who control the essentials in how a society functions, as for instance, its economic resources, its technology and its value systems. The explanation and justification for who controls these aspects of a society introduces the question of its ideology and often its form. The resulting patterns that can be differentiated from segment to segment of the society are frequently called its cultures. Most early societies register inequalities, The access of their members to wealth and status varies. The idea of equality therefore has many dimensions. All men and women may be said to be equal in the eyes of god, but may at the same time be extremely differentiated in terms of income and social standing, and therefore differentiated in the eyes of men and women. This would not apply to the entire society. There may be times when societies conform to a greater degree of equality, but such times may be temporary. It has been argued that on a pilgrimage, the status of every pilgrim is relatively similar but at the end returns to inequalities. Societies are not static and change their forms and their rules of functioning. Cultures are reflections of these social patterns, so they also change. My attempt in this introduction is to explain how the meaning of a concept such as culture has changed in recent times and has come to include many more facets than it did earlier. What we understand as the markers of culture have gone way beyond what we took them to be a century or two ago. Apart from items of culture, which is the way in which culture as heritage was popularly viewed, there is also the question of the institutions and social codes that determine the pattern of living, and upon which pattern a culture is constructed. Finally, there is the process of socialization into society and culture through education. There is a historical dimension to each of these as culture and history are deeply intertwined. There is also an implicit dialogue between the present and the past reflected in the way in which the readings of the past changed over historical periods. Every. society has its cultures, namely, the patterns of how the people of that society live. In varying degrees this would refer to broad categories that shape life, such as the environment that determines the relationship with the natural world, technology that enables a control over the natural world, political-economy that organizes the larger vision of a society as a community or even as a state, structures of social relations that ensure its networks of functioning, religion that appeals to aspirations and belief, mythology that may get transmuted into literature and philosophy that teases the mind and the imagination with questions. The process of growth is never static therefore there are mutations and changes within the society. There is communication and interaction with other societies through which cultures evolve and mutate. There is also the emergence of subcultures that sometimes take the form of independent and dominant cultures or amoeba-like breakaway to form new cultures. Although cultures coincide with history and historical change, the consciousness of a category such as culture, in the emphatic sense in which the term is popularly used these days, emerges in the eighteenth century in Europe. The ideal was the culture of elite groups, therefore sometimes a distinction is made between what carne to be called 'high culture' that of the elite, and low culture' that of those regarded as not being of the elite, and sometimes described as 'popular'. Historical records of elite cultures in forms such as texts and monuments for instance, received larger patronage and symbolized the patterns of life of dominant groups. They were and are more readily available as heritage than the objects of the socially lower groups in society whose less durable cultural manifestations often do not survive. This also predisposed people to associate culture as essentially that of the elite.What is the central idea of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions