1. Choose the alternative which best expresses the meaning of the Idiom/Phrase. to feel like a fish out of water





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 01.41 am
    NUMERICAL ANALYSIS
Show Similar Question And Answers
QA->Phrase of the Idiom " Fish out of water....
QA->Choose the correct alternative:A lunatic lives in an ………..whereas monks live in a……......
QA->Business has now become very dog eat dog. Choose the meaning for the idiom "Dog eat Dog".....
QA->Idiom of Fish out of water....
QA->Idiom of A fish out of water....
MCQ-> In the following questions, you have a brief passage with 5 questions following carefully and choose the best answer to each question out of the four alternatives.PASSAGE Fat comes in two types; Omega-3 which is found in marine life and Omega-6 which is concentrated in vegetable oils. The first is good, the other ios plain rotten. The best source of Omega-3 is preferably sea-fish. But frying it in Omega-6 rich vegetable oil kills all its goodness.Ageing brains have low levels of thiamin, which is concentrated in wheat germ and bran, nuts, meat and cereals. More good brain-food comes from liver, milk and almonds, which are rich in riboflavin and extremely good for memory. Carotene, available in deep green leafy vegetables and fruits, is also good for geriatric brains. So is a high iron diet; it can make old brains gallop hyperactively like young ones. Iron comes from greens; liver, shellfish, red meat and soybeans. Seafood, very high in iron, is an excellent diet supplement. The New England Journal of Medicine reported in its May 1985 issue that 30 grams of fish a day could result in a dramatic drop in the chances of acquiring a cardiovascular disease. Sea fish, particularly shellfish, crabs, mackerel and sardines, are more effective than riverine fish because the latter is more vulnerable to chemical effluents.30 grams of fish a day could result in:
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->Choose the alternative which best expresses the meaning of the Idiom/Phrase. to feel like a fish out of water....
MCQ-> Have you ever come across a painting, by Picasso, Mondrian, Miro, or any other modern abstract painter of this century, and found yourself engulfed in a brightly coloured canvas which your senses cannot interpret? Many people would tend to denounce abstractionism as senseless trash. These people are disoriented by Miro's bright, fanciful creatures and two- dimensional canvases. They click their tongues and shake their heads at Mondrian's grid works, declaring the poor guy played too many scrabble games. They silently shake their heads in sympathy for Picasso, whose gruesome, distorted figures must be a reflection of his mental health. Then, standing in front of a work by Charlie Russell, the famous Western artist, they'll declare it a work of God. People feel more comfortable with something they can relate to and understand immediately without too much thought. This is the case with the work of Charlie Russell. Being able to recognize the elements in his paintings - trees, horses and cowboys - gives people a safety line to their world of "reality". There are some who would disagree when I say abstract art requires more creativity and artistic talent to produce a good piece than does representational art, but there are many weaknesses in their arguments.People who look down on abstract art have several major arguments to support their beliefs. They feel that artists turn abstract because they are not capable of the technical drafting skills that appear in a Russell; therefore, such artists create an art form that anyone is capable of and that is less time consuming, and then parade it as artistic progress. Secondly, they feel that the purpose of art is to create something of beauty in an orderly, logical composition. Russell's compositions are balanced and rational, everything sits calmly on the canvas, leaving the viewer satisfied that he has seen all there is to see. The modern abstractionists, on the other hand, seem to compose their pieces irrationally. For example, upon seeing Picasso's Guernica, a friend of mine asked me, "What's the point?" Finally, many people feel that art should portray the ideal and real. The exactness of detail in Charlie Russell's work is an example of this. He has been called a great historian because his pieces depict the life style, dress, and events of the times. His subject matter is derived from his own experiences on the trail, and reproduced to the smallest detail.I agree in part with many of these arguments, and at one time even endorsed them. But now, I believe differently. Firstly, I object to the argument that abstract artists are not capable of drafting. Many abstract artists, such as Picasso, are excellent draftsmen. As his work matured, Picasso became more abstract in order to increase the expressive quality of his work. Guernica was meant as a protest against the bombing of that city by the Germans. To express the terror and suffering of the victims more vividly, he distorted the figures and presented them in a black and white journalistic manner. If he had used representational images and colour, much of the emotional content would have been lost and the piece would not have caused the demand for justice that it did. Secondly, I do not think that a piece must be logical and aesthetically pleasing to be art. The message it conveys to its viewers is more important. It should reflect the ideals and issues of its time and be true to itself, not just a flowery, glossy surface. For example, through his work, Mondrian was trying to present a system of simplicity, logic, and rational order. As a result, his pieces did end up looking like a scrabble board.Miro created powerful, surrealistic images from his dreams and subconscious. These artists were trying to evoke a response from society through an expressionistic manner. Finally, abstract artists and representational artists maintain different ideas about 'reality'. To the representational artist, reality is what he sees with his eyes. This is the reality he reproduces on canvas. To the abstract artist, reality is what he feels about what his eyes see. This is the reality he interprets on canvas. This can be illustrated by Mondrian's Trees series. You can actually see the progression from the early recognizable, though abstracted, Trees, to his final Explanation, the grid system.A cycle of abstract and representational art began with the first scratchings of prehistoric man. From the abstractions of ancient Egypt to representational, classical Rome, returning to abstractionism in early Christian art and so on up to the present day, the cycle has been going on. But this day and age may witness its death through the camera. With film, there is no need to produce finely detailed, historical records manually; the camera does this for us more efficiently. Maybe, representational art would cease to exist. With abstractionism as the victor of the first battle, may be a different kind of cycle will be touched off. Possibly, some time in the distant future, thousands of years from now, art itself will be physically non-existent. Some artists today believe that once they have planned and constructed a piece in their mind, there is no sense in finishing it with their hands; it has already been done and can never be duplicated.The author argues that many people look down upon abstract art because they feel that:
 ....
MCQ-> YOU HAVE ONE BRIEF PASSAGE WITH LIVE QUESTIONS. READ THE PASSAGE CAREFULLY AND CHOOSE THE BEST ANSWER TO EACH QUESTION OUT OF THE FOUR ALTERNATIVES. A reason why people at school read books is to please their teacher. The teacher has said that this that or the other is a good book and that it is a sign of good taste to enjoy it. So a number of boys and girls anxious to please their teacher get the book and read it. Two or three of them may genuinely like it for their own sake and be grateful to the teacher for putting it in their way. But many will not honestly like it or will persuade themselves that they like it. And that does a great deal of harm. The people who cannot like the book run the risk of two things happening to them either they are put off the idea of the book-let us suppose the book was David Copperfield-either they are put off the idea of classical novels or they take a dislike to Dickens and decide firmly never to waste their time on anything of the sort again or they get a guilty conscience about the whole thing they feel that they do not like what they ought to like and that therefore there is something wrong with them. They are quite mistaken of course. There is nothing wrong with them. The mistake has all been on the teacher s side. What has happened is that they have been shoved up against a book before they were ready for it. It is like giving a young child food only suitable for an adult Result indigestion violent stomach-ache and a rooted dislike of that article of food evermore.The passage is about what ?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions