1. What is the author trying to convey through the phrase ‘albatross around the neck‘ as used in the passage ?






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Idiom of Neck and neck....
QA->Idiom of Neck to neck....
QA->THE WIND MOVING AROUND SPIRALLY AROUND A LOW PRESSURE AREA IS KNOWN AS....
QA->How are the orbits of planets around the Sun; or of satellites around the Earth;?....
QA->How are the orbits of planets around the Sun, or of satellites around the Earth,?....
MCQ->What is the author trying to convey through the phrase ‘albatross around the neck‘ as used in the passage ?....
MCQ-> Read the following passage carefully and answer the questions given. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. From a technical and economic perspective, many assessments have highlighted the presence of cost-effective opportunities to reduce energy use in buildings. However several bodies note the significance of multiple barriers that prevent the take-up of energy efficiency measures in buildings. These include lack of awareness and concern, limited access to reliable information from trusted sources, fear about risk, disruption and other ‘transaction costs’ concerns about up-front costs and inadequate access to suitably priced finance, a lack of confidence in suppliers and technologies and the presence of split incentives between landlords and tenants. The widespread presence of these barriers led experts to predict thatwithout a concerted push from policy, two-thirds of the economically viable potential to improve energy efficiency will remain unexploited by 2035. These barriers are albatross around the neck that represent a classic market failure and a basis for governmental intervention. While these measurements focus on the technical, financial or economic barriers preventing the take-up of energy efficiency options in buildings, others emphasise the significance of the often deeply embedded social practices that shape energy use in buildings. These analyses focus not on the preferences and rationalities that might shape individual behaviours, but on the ‘entangled’ cultural practices, norms, values and routines that underpin domestic energy use. Focusing on the practice-related aspects of consumption generates very different conceptual framings and policy prescriptions than those that emerge from more traditional or mainstream perspectives. But the underlying case for government intervention to help to promote retrofit and the diffusion of more energy efficient particles is still apparent, even though the forms of intervention advocated are often very different to those that emerge from a more technical or economic perspective. Based on the recognition of the multiple barriers to change and the social, economic and environmental benefits that could be realised if they were overcome, government support for retrofit (renovating existing infrastructure to make it more energy efficient) has been widespread. Retrofit programmes have been supported and adopted in diverse forms in many setting and their ability to recruit householders and then to impact their energy use has been discussed quite extensively. Frequently, these discussions have criticised the extent to which retrofit schemes rely on incentives and the provision of new technologies to change behaviour whilst ignoring the many other factors that might limit either participation in the schemes or their impact on the behaviours and prac-tices that shape domestic energy use. These factors are obviously central to the success of retrofit schemes, but evaluations of different schemes have found that despite these they can still have significant impacts. Few experts that the best estimate of the gap between the technical potential and the actual in-situ performance of energy efficiency measures is 50%, with 35% coming from performance gaps and 15% coming from ‘comfort taking’ or direct rebound effects. They further suggest that the direct rebound effect of energy efficiency measures related to household heating is Ilkley to be less than 30% while rebound effects for various domestic energy efficiency measures vary from 5 to 15% and arise mostly from indirect effects (i.e., where savings from energy efficiency lead to increased demand for goods and services). Other analyses also note that the gap between technical potential and actual performance is likely to vary by measure, with the range extending from 0% for measures such as solar water heating to 50% for measures such as improved heating controls. And others note that levels of comfort taking are likely to vary according to the levels of consumption and fuel poverty in the sample of homes where insulation is installed, with the range extending from 30% when considering homes across all income groups to around 60% when considering only lower income homes. The scale of these gapsis significant because it materially affects the impacts of retrofit schemes and expectations and perceptions of these impacts go on to influence levels of political, financial and public support for these schemes. The literature on retrofit highlights the presence of multiple barriers to change and the need for government support, if these are to be overcome. Although much has been written on the extent to which different forms of support enable the wider take-up of domestic energy efficiency measures, behaviours and practices, various areas of contestation remain and there is still an absence of robust ex-post evidence on the extent to which these schemes actually do lead to the social, economic and environmental benefits that are widely claimed.Which of the following is most nearly the OPPOSITE in meaning to the word ‘CONCERTED’ as used in the passage ?
 ....
MCQ->After a couple of weeks, Mr. Patel came to know that Dipangshu’s project leader Mr. John, a very competent senior executive, may have wil fully influenced his team members to file a wrong complaint against Dipangshu. Mr. John may have done it because Dipangshu has refused to tow John’s line. Mr. Patel also came to know that Dipangshu was thinking of quitting this job. He felt regretful about his letter to Dipangshu. He wanted to resolve the complicated situation. He was contemplating following five actions in his mind. I. Talk to Mr. John about Dipangshu and convey to him that losing a bright employee would cost the organization dearly. II. Catch up with Mr. John during coffee break and convey that Dipangshu has a very good track record. III. Chat with Dipangshu during coffee break. IV. Catch up with Dipangshu during coffee break and convey that the organization values him. V. Arrange a meeting among Mr. John, Dipangshu and himself to sort out the difference. Which of the following is the best sequence of actions for resolving the problem?....
MCQ-> Have you ever come across a painting, by Picasso, Mondrian, Miro, or any other modern abstract painter of this century, and found yourself engulfed in a brightly coloured canvas which your senses cannot interpret? Many people would tend to denounce abstractionism as senseless trash. These people are disoriented by Miro's bright, fanciful creatures and two- dimensional canvases. They click their tongues and shake their heads at Mondrian's grid works, declaring the poor guy played too many scrabble games. They silently shake their heads in sympathy for Picasso, whose gruesome, distorted figures must be a reflection of his mental health. Then, standing in front of a work by Charlie Russell, the famous Western artist, they'll declare it a work of God. People feel more comfortable with something they can relate to and understand immediately without too much thought. This is the case with the work of Charlie Russell. Being able to recognize the elements in his paintings - trees, horses and cowboys - gives people a safety line to their world of "reality". There are some who would disagree when I say abstract art requires more creativity and artistic talent to produce a good piece than does representational art, but there are many weaknesses in their arguments.People who look down on abstract art have several major arguments to support their beliefs. They feel that artists turn abstract because they are not capable of the technical drafting skills that appear in a Russell; therefore, such artists create an art form that anyone is capable of and that is less time consuming, and then parade it as artistic progress. Secondly, they feel that the purpose of art is to create something of beauty in an orderly, logical composition. Russell's compositions are balanced and rational, everything sits calmly on the canvas, leaving the viewer satisfied that he has seen all there is to see. The modern abstractionists, on the other hand, seem to compose their pieces irrationally. For example, upon seeing Picasso's Guernica, a friend of mine asked me, "What's the point?" Finally, many people feel that art should portray the ideal and real. The exactness of detail in Charlie Russell's work is an example of this. He has been called a great historian because his pieces depict the life style, dress, and events of the times. His subject matter is derived from his own experiences on the trail, and reproduced to the smallest detail.I agree in part with many of these arguments, and at one time even endorsed them. But now, I believe differently. Firstly, I object to the argument that abstract artists are not capable of drafting. Many abstract artists, such as Picasso, are excellent draftsmen. As his work matured, Picasso became more abstract in order to increase the expressive quality of his work. Guernica was meant as a protest against the bombing of that city by the Germans. To express the terror and suffering of the victims more vividly, he distorted the figures and presented them in a black and white journalistic manner. If he had used representational images and colour, much of the emotional content would have been lost and the piece would not have caused the demand for justice that it did. Secondly, I do not think that a piece must be logical and aesthetically pleasing to be art. The message it conveys to its viewers is more important. It should reflect the ideals and issues of its time and be true to itself, not just a flowery, glossy surface. For example, through his work, Mondrian was trying to present a system of simplicity, logic, and rational order. As a result, his pieces did end up looking like a scrabble board.Miro created powerful, surrealistic images from his dreams and subconscious. These artists were trying to evoke a response from society through an expressionistic manner. Finally, abstract artists and representational artists maintain different ideas about 'reality'. To the representational artist, reality is what he sees with his eyes. This is the reality he reproduces on canvas. To the abstract artist, reality is what he feels about what his eyes see. This is the reality he interprets on canvas. This can be illustrated by Mondrian's Trees series. You can actually see the progression from the early recognizable, though abstracted, Trees, to his final Explanation, the grid system.A cycle of abstract and representational art began with the first scratchings of prehistoric man. From the abstractions of ancient Egypt to representational, classical Rome, returning to abstractionism in early Christian art and so on up to the present day, the cycle has been going on. But this day and age may witness its death through the camera. With film, there is no need to produce finely detailed, historical records manually; the camera does this for us more efficiently. Maybe, representational art would cease to exist. With abstractionism as the victor of the first battle, may be a different kind of cycle will be touched off. Possibly, some time in the distant future, thousands of years from now, art itself will be physically non-existent. Some artists today believe that once they have planned and constructed a piece in their mind, there is no sense in finishing it with their hands; it has already been done and can never be duplicated.The author argues that many people look down upon abstract art because they feel that:
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions