1. In each of the following sentences, an idiomatic expression or a proverb is highlighted. Select the alternative which best describes its use in the Sentence.There is a crying need for improvements to our public transport system.
 






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
QA->In the following sentence, supply a verb in agreement with its subject:Neither food nor water…………….to be found there.....
QA->Which part of the following sentences is incorrect? The toy.(a)/ which you(b)/gave my children (c)/ Work perfectly. (d) ....
QA->Which part of the following sentences is incorrect? she would not(a)/say us (b)/how old (c)/she was (d) ....
QA->Which part of the following sentences is incorrect? The bridegroom(a)/with his friends (b)/have arrived(e) at the temple (d) ....
MCQ-> DI
 rectI
 ons: I
 n the followI
 ng passage there are blanks, each of whI
 ch has been numbered. These numbers are prI
 nted below the passage and agaI
 nst each, fI
 ve words/ phrases are suggested, one of whI
 ch fI
 ts the blank approprI
 ately. FI
 nd out the approprI
 ate word/ phrase I
 n each case.There I
 s a consI
 derable amount of research about the factors that make a company I
 nnovate. So I
 s I
 t possI
 ble to create an envI
 ronment (I
 ) to I
 nnovatI
 on? ThI
 s I
 s a partI
 cularly pertI
 nent (I
 I
 ) for I
 ndI
 a today. MassI
 ve problems I
 n health, educatI
 on etc (I
 I
 I
 ) be solved usI
 ng a conventI
 onal Approach but (I
 V) creatI
 ve and I
 nnovatI
 ve solutI
 ons that can ensure radI
 cal change and (V). There are several factors I
 n I
 ndI
 a's (VI
 ). Few countrI
 es have the rI
 ch dI
 versI
 ty that I
 ndI
 a or I
 ts large, young populatI
 on (VI
 I
 ). WhI
 le these (VI
 I
 I
 ) I
 nnovatI
 on polI
 cy I
 nterventI
 ons certaI
 n addI
 tI
 onal steps are also requI
 red. These I
 nclude (I
 X) I
 nvestment I
 n research and development by (X) the government and the prI
 vate sector, easy transfer of technology from the academI
 c world etc. To fulfI
 ll I
 ts promI
 se of beI
 ng prosperous and to be at the forefront, I
 ndI
 a must be I
 nnovatI
 ve.I
 ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> In each of the following sentences, an idiomatic expression or a proverb is highlighted. Select the alternative which best describes its use in the Sentence.There is a crying need for improvements to our public transport system.
 ....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in ‘’bold’’ to help you locate them while answering some of the questions.As increasing dependence on information systems develops, the need for such system to be reliable and secure also becomes more essential. As growing numbers of ordinary citizens use computer networks for banking, shopping, etc., network security in potentially a ‘’massive’’ problem. Over the last few years, the need for computer and information security system has become increasingly evident, as web sites are being defaced with greater frequency, more and more denial-of-service attacks are being reported, credit card information is being stolen, there is increased sophistication of hacking tools that are openly available to the public on the Internet, and there is increasing damage being caused by viruses and worms to critical information system resources.At the organizational level, institutional mechanism have to be designed in order to review policies, practices, measures and procedures to review e-security regularly and assess whether these are appropriate to their environment. It would be helpful if organizations share information about threats and vulnerabilities, and implement procedures of rapid and effective cooperation to prevent, detect and respond to security incidents. As new threats and vulnerabilities are continuously discovered there is a strong need for co-operation among organizations and, if necessary, we could also consider cross-border information sharing. We need to understand threats and dangers that could be ‘’vulnerable’’ to and the steps that need to be taken to ‘’mitigate’’ these vulnerabilities. We need to understand access control systems and methodology, telecommunications and network security, and security management practise. We should be well versed in the area of application and systems development security, cryptography, operations security and physical security.The banking sector is ‘’poised’’ for more challenges in the near future. Customers of banks can now look forward to a large array of new offerings by banks, from an ‘’era’’ of mere competition, banks are now cooperating among themselves so that the synergistic benefits are shared among all the players. This would result in the information of shared payment networks (a few shared ATM networks have already been commissioned by banks), offering payment services beyond the existing time zones. The Reserve Bank is also facilitating new projects such as the Multi Application Smart Card Project which, when implemented, would facilitate transfer of funds using electronic means and in a safe and secure manner across the length and breadth of the country, with reduced dependence on paper currency. The opportunities of e-banking or e-power is general need to be harnessed so that banking is available to all customers in such a manner that they would feel most convenient, and if required, without having to visit a branch of a bank. All these will have to be accompanied with a high level of comfort, which again boils down to the issue of e-security.One of the biggest advantages accruing to banks in the future would be the benefits that arise from the introduction of Real Time Gross Settlement (RTGS). Funds management by treasuries of banks would be helped greatly by RTGS. With almost 70 banks having joined the RTGS system, more large value funds transfer are taking place through this system. The implementation of Core Banking solutions by the banks is closely related to RTGS too. Core Banking will make anywhere banking a reality for customers of each bank. while RTGS bridges the need for inter-bank funds movement. Thus, the days of depositing a cheque for collection and a long wait for its realization would soon be a thing of the past for those customers who would opt for electronic movement of funds, using the RTGS system, where the settlement would be on an almost ‘’instantaneous’’ basis. Core Banking is already in vogue in many private sector and foreign banks; while its implementation is at different stages amongst the public sector banks.IT would also facilitate better and more scientific decision-making within banks. Information system now provide decision-makers in banks with a great deal of information which, along with historical data and trend analysis, help in the building up of efficient Management Information Systems. This, in turn, would help in better Asset Liability Management (ALM) which, today’s world of hairline margins is a key requirement for the success of banks in their operational activities. Another benefit which e-banking could provide for relates to Customer Relationship Management (CRM). CRM helps in stratification of customers and evaluating customer needs on a holistic basis which could be paving the way for competitive edge for banks and complete customer care for customer of banks.The content of the passage ‘’mainly’’ emphasizes----
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions