1. On a spread sheet the active cell is indicated





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->There are three types of data found in a spread sheet:....
QA->What shall be indicated on a receipt issued towards receipt of cheque/demand draft by Grama Panchayats?....
QA->The I.P (indicated power) of an engine is always …………… the break power.....
QA->Morse test is conducted to find out the indicated power of :....
QA->Which sets indicated the Aeolian process?....
MCQ-> The membrane-bound nucleus is the most prominent feature of the eukaryotic cell. Schleiden and Schwann, when setting forth the cell doctrine in the 1830s, considered that it had a central role in growth and development. Their belief has been fully supported even though they had only vague notions as to what that role might be, and how the role was to be expressed in some cellular action. The membraneless nuclear area of the prokaryotic cell, with its tangle of fine threads, is now known to play a similar role.Some cells, like the sieve tubes of vascular plants and the red blood cells of mammals, do not possess nuclei during the greater part of their existence, although they had nuclei when in a less differentiated state. Such cells can no longer divide and their life span is limited Other cells are regularly multinucleate. Some, like the cells of striated muscles or the latex vessels of higher plants, become so through cell fusion. Some, like the unicellular protozoan paramecium, are normally binucleate, one of the nuclei serving as a source of hereditary information for the next generation, the other governing the day-to-day metabolic activities of the cell. Still other organisms, such as some fungi, are multinucleate because cross walls, dividing the mycelium into specific cells, are absent or irregularly present. The uninucleate situation, however, is typical for the vast majority of cells, and it would appear that this is the most efficient and most economical manner of partitioning living substance into manageable units. This point of view is given credence not only by the prevalence of uninucleate cells, but because for each kind of cell there is a ratio maintained between the volume of the nucleus and that of the cytoplasm. If we think of the nucleus as the control centre of the cell, this would suggest that for a given kind of cell performing a given kind of work, one nucleus can ‘take care of’ a specific volume of cytoplasm and keep it in functioning order. In terms of material and energy, this must mean providing the kind of information needed to keep flow of materials and energy moving at the correct rate and in the proper channels. With the multitude of enzymes in the cell, materials and energy can of course be channelled in a multitude of ways; it is the function of some information molecules to make channels of use more preferred than others at any given time. How this regulatory control is exercised is not entirely clear.The nucleus is generally a rounded body. In plant cells, however, where the centre of the cell is often occupied by a large vacuole, the nucleus may be pushed against the cell wall, causing it to assume a lens shape. In some white blood cells, such as polymorphonucleated leukocytes, and in cells of the spinning gland of some insects and spiders, the nucleus is very much lobed The reason for this is not clear, but it may relate to the fact that for a given volume of nucleus, a lobate form provides a much greater surface area for nuclear-cytoplasmic exchanges, possibly affecting both the rate and the amount of metabolic reactions. The nucleus, whatever its shape, is segregated from the cytoplasm by a double membrane, the nuclear envelope, with the two membranes separated from each other by a perinuclear space of varying width. The envelope is absent only during the time of cell division, and then just for a brief period The outer membrane is often continuous with the membranes of the endoplasmic reticulum, a possible retention of an earlier relationship, since the envelope, at least in part, is formed at the end cell division by coalescing fragments of the endoplasmic reticulum. The cytoplasmic side of the nucleus is frequently coated with ribosomes, another fact that stresses the similarity and relation of the nuclear envelope to the endoplasmic reticulum. The inner membrane seems to posses a crystalline layer where it abuts the nucleoplasm, but its function remains to be determined.Everything that passes between the cytoplasm and the nucleus in the eukaryotic cell must transverse the nuclear envelope. This includes some fairly large molecules as well as bodies such as ribosomes, which measure about 25 mm in diameter. Some passageway is, therefore, obviously necessary since there is no indication of dissolution of the nuclear envelope in order to make such movement possible. The nuclear pores appear to be reasonable candidates for such passageways. In plant cells these are irregularly, rather sparsely distributed over the surface of the nucleus, but in the amphibian oocyte, for example, the pores are numerous, regularly arranged, and octagonal and are formed by the fusion of the outer and inner membrane.Which of the following kinds of cells never have a nuclei?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->On a spread sheet the active cell is indicated....
MCQ-> The teaching and transmission of North Indian classical music is, and long has been, achieved by largely oral means. The raga and its structure, the often breathtaking intricacies of talc, or rhythm, and the incarnation of raga and tala as bandish or composition, are passed thus, between guru and shishya by word of mouth and direct demonstration, with no printed sheet of notated music, as it were, acting as a go-between. Saussure’s conception of language as a communication between addresser and addressee is given, in this model, a further instance, and a new, exotic complexity and glamour.These days, especially with the middle class having entered the domain of classical music and playing not a small part ensuring the continuation of this ancient tradition, the tape recorder serves as a handy technological slave and preserves, from oblivion, the vanishing, elusive moment of oral transmission. Hoary gurus, too, have seen the advantage of this device, and increasingly use it as an aid to instructing their pupils; in place of the shawls and other traditional objects that used to pass from shishya to guru in the past, as a token of the regard of the former for the latter, it is not unusual, today, to see cassettes changing hands.Part of my education in North Indian classical music was conducted via this rather ugly but beneficial rectangle of plastic, which I carried with me to England when I was a undergraduate. Once cassette had stored in it various talas played upon the tabla, at various tempos, by my music teacher’s brother-in law, Hazarilalii, who was a teacher of Kathak dance, as well as a singer and a tabla player. This was a work of great patience and prescience, a one-and-a-half hour performance without my immediate point or purpose, but intended for some delayed future moment who I’d practise the talas solitarily.This repeated playing our of the rhythmic cycles on the tabla was inflected by the noises-an hate auto driver blowing a horn; the sound bf overbearing pigeons that were such a nuisance on the banister; even the cry of a kulfi seller in summer —entering from the balcony of the third foot flat we occupied in those days, in a lane in a Bombay suburb, before we left the city for good. These sounds, in turn, would invade, hesitantly, the ebb and flow of silence inside the artificially heated room, in a borough of West London, in which I used to live as an undergraduate. There, in the trapped dust, silence and heat, the theka of the tabla, qualified by the imminent but intermittent presence of the Bombay subrub, would come to life again. A few years later, the tabla and, in the background, the pigeons and the itinerant kulfi seller, would inhabit a small graduate room in Oxford.cThe tape recorder, though, remains an extension of the oral transmission of music, rather than a replacement of it. And the oral transmission of North Indian classical music remains, almost uniquely, testament to the fact that the human brain can absorb, remember and reproduces structures of great complexity and sophistication without the help of the hieroglyph or written mark or a system of notation. I remember my surprise on discovering the Hazarilalji- who had mastered Kathak dance, tala and North Indian classical music, and who used to narrate to me, occasionally, compositions meant for dance that were grant and intricate in their verbal prosody, architecture and rhythmic complexity- was near illustrate and had barely learnt to write his name in large and clumsy letters.Of course, attempts have been made, throughout the 20th century, to formally codify and even notate this music, and institutions set up and degrees created, specifically to educate students in this “scientific” and codified manner. Paradoxically, however, this style of teaching has produced no noteworthy student or performer; the most creative musicians still emerge from the guru-shishya relationship, their understanding of music developed by oral communication.The fact that North Indian classical music emanates from, and has evolved through, oral culture, means that this music has a significantly different aesthetic, aw that this aesthetic has a different politics, from that of Western classical music) A piece of music in the Western tradition, at least in its most characteristic and popular conception, originates in its composer, and the connection between the two, between composer and the piece of music, is relatively unambiguous precisely because the composer writes down, in notation, his composition, as a poet might write down and publish his poem. However far the printed sheet of notated music might travel thus from the composer, it still remains his property; and the notion of property remains at the heart of the Western conception of “genius”, which derives from the Latin gignere or ‘to beget’.The genius in Western classical music is, then, the originator, begetter and owner of his work the printed, notated sheet testifying to his authority over his product and his power, not only of expression or imagination, but of origination. The conductor is a custodian and guardian of this property. IS it an accident that Mandelstam, in his notebooks, compares — celebratorily—the conductor’s baton to a policeman’s, saying all the music of the orchestra lies mute within it, waiting for its first movement to release it into the auditorium?The raga — transmitted through oral means — is, in a sense, no one’s property; it is not easy to pin down its source, or to know exactly where its provenance or origin lies. Unlike the Western classical tradition, where the composer begets his piece, notates it and stamps it with his ownership and remains, in effect, larger than, or the father of, his work, in the North India classical tradition, the raga — unconfined to a single incarnation, composer or performer — remains necessarily greater than the artiste who invokes it.This leads to a very different politics of interpretation and valuation, to an aesthetic that privileges the evanescent moment of performance and invocation over the controlling authority of genius and the permanent record. It is a tradition, thus, that would appear to value the performer, as medium, more highly than the composer who presumes to originate what, effectively, cannot be originated in a single person — because the raga is the inheritance of a culture.The author’s contention that the notion of property lies at the heart of the Western conception of genius is best indicated by which one of the following?
 ....
MCQ->On an Excel sheet the active cell is indicated by:....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions