1. Let x be a random variable with probability mass function (x) = k, |x|, if x = -2, 1, 3 =0, otherwise where, K is a constant. Then the variance of x is :





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->For a body moving with constant speed in a horizontal circle; what remains constant?....
QA->For a body moving with constant speed in a horizontal circle, what remains constant?....
QA->Assume there are 4 file servers each with a 95 chance of being up at any instant. Probability of at least one being available is :....
QA->Synonym of Random (adj.)....
QA->Idiom of At variance with....
MCQ-> Analyze the following passage and provide appreciate answers for the questions that follow. Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the ‘axiom of convergence’ (or ‘limit axiom’) and with a somewhat weakened ‘axiom of randomness’ The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by ‘probability’.The statement, “The relations between probability and experience are still in need of clarification” implies that:
 ....
MCQ->Let x be a random variable with probability mass function (x) = k, |x|, if x = -2, 1, 3 =0, otherwise where, K is a constant. Then the variance of x is :....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ-> Analyse the following passage and provide an appropriate answer for the questions that follow. When we speak of the “probability of death”, the exact meaning of the experience can be defined in the following way only. We must not think of an individual, but of this expression can be defined in the following way only. We must not think of an individual, but of a certain class as a whole, e.g., “all insured men forty-one years old living in a given country and not engaged in certain dangerous occupations.” A probability of death is attached to the class of men or to another class that can be defined in a similar way. We can say nothing about the probability of death of an individual even if we know this condition of life and health in detail. The phrase “probability of death”, which it refers to a single person, has no meaning at all.Which of the following conclusions can be drawn from the passage? 1. Singular, non replicable events can be assigned numerical probability value. 2. Probability calculation requires data of the class of people or of events. 3. The data about a class of events can be used to predict the future of any specific event.....
MCQ->The probability mass function of a discrete random variable X is f(x)= x10 for x=1,2,3,4 and 0 for other values of X. Let F(x) denote the distribution function of X. Then F(4)-F(3) is:....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions