1. Whichcountry to launch first hack proof Quantum Communication Satellite ?

Answer: China

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Whichcountry to launch first hack proof Quantum Communication Satellite ?....
QA->The launch of which advanced communication satellite failed as the geosynchronous satellite launch vehicle (GSLV) exploded mid-air moments after it took off from the Sriharikota rocket launch centre on December 25,2010?....
QA->Materials for rain-proof coats and tents owe their water proof properties to:....
QA->India"s communication satellite which was successfully launched by the Ariane-5 launch vehicle VA221 of Arianespace from Kourou, French Guiana on December 7, 2014?....
QA->ISRO got 200 Crore profit by making satellite to a European Communication Company. This is the first time ISRO making satellite for a foreign customer. Name the company?....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: An effective way of describing what interpersonal communication is or is not, is perhaps to capture the underlying beliefs using specific game analogies. Communication as Bowling: The bowling model of message delivery is probably the most widely held view of communication. I think that’s unfortunate. This model sees the bowler as the sender, who delivers the ball, which is the message. As it rolls down the lane (the channel), clutter on the boards (noise) may deflect the ball (the message). Yet if it is aimed well, the ball strikes the passive pins (the target audience) with a predictable effect. In this one - way model of communication, the speaker (bowler) must take care to select a precisely crafted message (ball) and practice diligently to deliver it the same way every time. Of course, that makes sense only if target listeners are interchangeable, static pins waiting to be bowled over by our words - which they aren’t. This has led some observers to propose an interactive model of interpersonal communication. Communication as Ping - Pong: Unlike bowling, Ping - Pong is not a solo game. This fact alone makes it a better analogy for interpersonal communication. One party puts the conversational ball in play, and the other gets into position to receive. It takes more concentration and skill to receive than to serve because while the speaker (server) knows where the message is going, the listener (receive) doesn’t. Like a verbal or nonverbal message, the ball may appear straightforward yet have a deceptive spin. Ping - Pong is a back - and - forth game; players switch roles continuously. One moment the person holding the paddle is an initiator; the next second the same player is a responder, gauging the effectiveness of his or her shot by the way the ball comes back. The repeated adjustment essential for good play closely parallels the feedback process described in a number of interpersonal communication theories. Communication as Dumb Charades The game of charades best captures the simultaneous and collaborative nature of interpersonal communication. A charade is neither an action, like bowling a strike, nor an interaction, like a rally in Ping - Pong. It’s a transaction. Charades is a mutual game; the actual play is cooperative. One member draws a title or slogan from a batch of possibilities and then tries to act it out visually for teammates in a silent mini drama. The goal is to get at least one partner to say the exact words that are on the slip of paper. Of course, the actor is prohibited from talking out loud. Suppose you drew the saying “God helps those who help themselves.” For God you might try folding your hands and gazing upward. For helps you could act out offering a helping hand or giving a leg - up boost over a fence. By pointing at a number of real or imaginary people you may elicit a response of them, and by this point a partner may shout out, “God helps those who help themselves.” Success. Like charades, interpersonal communication is a mutual, on - going process of sending, receiving, and adapting verbal and nonverbal messages with another person to create and alter images in both of our minds. Communication between us begins when there is some overlap between two images, and is effective to the extent that overlap increases. But even if our mental pictures are congruent, communication will be partial as long as we interpret them differently. The idea that “God helps those who help themselves’ could strike one person as a hollow promise, while the other might regard it as a divine stamp of approval for hard work. Dumb Charade goes beyond the simplistic analogy of bowling and ping pong. It views interpersonal communications as a complex transaction in which overlapping messages simultaneously affect and are affected by the other person and multiple other factors.The meaning CLOSEST to ‘interchangeable’ in the ‘Communication as Bowling’ paragraph is:
 ...
MCQ-> Read the following caselet and answer the questions that follow:Due to increased competition, Electro Automobiles, the Indian subsidiary of Robert Automobile Company (RAC) reported lower sales and profits. RAC expects its new model Limo, developed especially for value conscious customers of India and China, would revive its fortunes. In order to prevent customers from buying competing products, RAC announced the launch of Limo six months ahead of schedule. Unrest in its Indian supplier resulted in delayed delivery of essential components to its main plant. Hence, Limo was launched on schedule only in China. Within a short span, Limo captured 30% of the Chinese market , which was 200% higher than expectation. Indian customers were becoming increasingly restless because they couldn't get a Limo in India. Electro’s dealers were worried, customers might switch to other cars.The indian subsidiary is concerned that the delay in launching the product will give undue advantage to some competitor. The organization was considering the following strategies to keep customers engaged with the company:1. Ask the dealers to encourage their prospective customers to seek similar products from the competition, rather than wait for Limo’s launch. 2. Suggest the dealers to accept booking for Limo, announcing the launch within six months of booking, while in reality plan to keep postponing launch indefinitely. 3. Run full page advertisements in the papers, every month, to keep the interest in the model from ebbing, with no mention of the launch date. 4. Import parts from outside India, and launch the product, at a 30% premium, planning a relaunch a few years later of the indianized version. 5. Go against its worldwide policy of non-interference in supplier plants, and announce a hefty bonus to the employees of the supplier with a hope to temporarily bring the plant to life. 6. Promise the supplier plant (that has some unrest) a higher margin share of about 5% compared to what was shared earlier, with an eye to stem the unrest. Which of the following combination of responses above, will most likely keep the prospective customers engaged with the company and not jump to some competitor’s product?...
MCQ->Examine the following statements Pneumatic systems are fire proof.Pneumatic systems are explosion proof.Hydraulic systems are explosion proof.Hydraulic systems are fire proof. Which of the above statements are correct?...
MCQ->Which of the following statement/s is/are correct regarding IRNSS- 1G: It is ISRO's seventh regional navigational Satellite launch. It has been launched from the Satish Dhawan Space Centre in Sriharikota. 3. The weight of satellite is 1,325 kg satellite. 4. The satellite was successfully placed in sub-Geosynchronous Transfer Orbit....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions