1. Name theMoon of Jupiter on which the evidence of possible water plumes was discoveredby astronomers of NASA.

Answer: Europa

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Name theMoon of Jupiter on which the evidence of possible water plumes was discoveredby astronomers of NASA.....
QA->Name thegiant hot Jupiter exoplanet tidally spinning up its parent star was found byInternational team of astronomers.....
QA->What is the name given to the NASA space probe orbiting the planet Jupiter after entering orbit on July 5, 2016?....
QA->Which spacecraft of NASA has completed its orbit around CERES, the dwarf planet between Mars and Jupiter?....
QA->On April 24, 2017, a NASA astronaut broke the record for most total days spent in space by any NASA astronaut, at more than 534 days. Name that astronaut?....
MCQ-> In the modern scientific story, light was created not once but twice. The first time was in the Big Bang, when the universe began its existence as a glowing, expanding, fireball, which cooled off into darkness after a few million years. The second time was hundreds of millions of years later, when the cold material condensed into dense suggests under the influence of gravity, and ignited to become the first stars.Sir Martin Rees, Britain’s astronomer royal, named the long interval between these two enlightements the cosmic ‘Dark Age’. The name describes not only the poorly lit conditions, but also the ignorance of astronomers about that period. Nobody knows exactly when the first stars formed, or how they organized themselves into galaxies — or even whether stars were the first luminous objects. They may have been preceded by quasars, which are mysterious, bright spots found at the centres of some galaxies.Now two independent groups of astronomers, one led by Robert Becker of the University of California, Davis, and the other by George Djorgovski of the Caltech, claim to have peered far enough into space with their telescopes (and therefore backwards enough in time) to observe the closing days of the Dark age.The main problem that plagued previous efforts to study the Dark Age was not the lack of suitable telescopes, but rather the lack of suitable things at which to point them. Because these events took place over 13 billion years ago, if astronomers are to have any hope of unravelling them they must study objects that are at least 13 billion light years away. The best prospects are quasars, because they are so bright and compact that they can be seen across vast stretches of space. The energy source that powers a quasar is unknown, although it is suspected to be the intense gravity of a giant black hole. However, at the distances required for the study of Dark Age, even quasars are extremely rare and faint.Recently some members of Dr Becker’s team announced their discovery of the four most distant quasars known. All the new quasars are terribly faint, a challenge that both teams overcame by peering at them through one of the twin Keck telescopes in Hawaii. These are the world’s largest, and can therefore collect the most light. The new work by Dr Becker’s team analysed the light from all four quasars. Three of them appeared to be similar to ordinary, less distant quasars. However, the fourth and most distant, unlike any other quasar ever seen, showed unmistakable signs of being shrouded in a fog because new-born stars and quasars emit mainly ultraviolet light, and hydrogen gas is opaque to ultraviolet. Seeing this fog had been the goal of would-be Dark Age astronomers since 1965, when James Gunn and Bruce Peterson spelled out the technique for using quasars as backlighting beacons to observe the fog’s ultraviolet shadow.The fog prolonged the period of darkness until the heat from the first stars and quasars had the chance to ionise the hydrogen (breaking it into its constituent parts, protons and electrons). Ionised hydrogen is transparent to ultraviolet radiation, so at that moment the fog lifted and the universe became the well-lit place it is today. For this reason, the end of the Dark Age is called the ‘Epoch of Re-ionisation’. Because the ultraviolet shadow is visible only in the most distant of the four quasars, Dr Becker’s team concluded that the fog had dissipated completely by the time the universe was about 900 million years old, and oneseventh of its current size.In the passage, the Dark Age refers to
 ...
MCQ-> Read the following passage and solve the questions based on it. a.Six Indian professors from six different institutions (Jupiter, Mars, Mercury, Neptune, Pluto, Uranus) went to China to attend an international conference on “Sustainability and Innovation in Management: A Global Scenario” and they stayed in six successive rooms on the second floor of a hotel (201 _ 206). b.Each of them has published papers in a number of journals and has donated to a number of institutions last year. c.The professor in room no. 202 has published in twice as many journals as the professor who donated to 8 institutions last year. d.The professor from Uranus and the Professor in room number 206 together published in a total of 40 journals. e.The professor from Jupiter published in 8 journals less than the professor from Pluto but donated to 10 more institutions last year. f.Four times the number of 4 journal publications by the professor in room number 204 is lesser than the number of institutions to which he donated last year. g.The professor in room number 203 published in 12 journals and donated to 8 institutions last year. h.The professor who published in 16 journals donated to 24 institutions last year. i.The professor in room number 205 published in 8 journals and donated to 2 institutions less than the professor from Mercury last year. The Mercury professor is staying in an odd numbered room. j.The Mars professor is staying two rooms ahead of Pluto professor who is staying two rooms ahead of the Mercury professor in ascending order of room numbers. k.The professors from Mercury and Jupiter do not stay in room number 206.In which room is the Mars professor staying?
 ...
MCQ-> Read the passage carefully and answer the questions givenGrove snails as a whole are distributed all over Europe, but a specific variety of the snail, with a distinctive white-lipped shell, is found exclusively in Ireland and in the Pyrenees mountains that lie on the border between France and Spain. The researchers sampled a total of 423 snail specimens from 36 sites distributed across Europe, with an emphasis on gathering large numbers of the white-lipped variety. When they sequenced genes from the mitochondrial DNA of each of these snails and used algorithms to analyze the genetic diversity between them, they found that. . . a distinct lineage (the snails with the white-lipped shells) was indeed endemic to the two very specific and distant places in question.Explaining this is tricky. Previously, some had speculated that the strange distributions of creatures such as the white-lipped grove snails could be explained by convergent evolution—in which two populations evolve the same trait by coincidence—but the underlying genetic similarities between the two groups rules that out. Alternately, some scientists had suggested that the white-lipped variety had simply spread over the whole continent, then been wiped out everywhere besides Ireland and the Pyrenees, but the researchers say their sampling and subsequent DNA analysis eliminate that possibility too. “If the snails naturally colonized Ireland, you would expect to find some of the same genetic type in other areas of Europe, especially Britain. We just don’t find them,” Davidson, the lead author, said in a press statement.Moreover, if they’d gradually spread across the continent, there would be some genetic variation within the white-lipped type, because evolution would introduce variety over the thousands of years it would have taken them to spread from the Pyrenees to Ireland. That variation doesn’t exist, at least in the genes sampled. This means that rather than the organism gradually expanding its range, large populations instead were somehow moved en mass to the other location within the space of a few dozen generations, ensuring a lack of genetic variety.“There is a very clear pattern, which is difficult to explain except by involving humans,” Davidson said. Humans, after all, colonized Ireland roughly 9,000 years ago, and the oldest fossil evidence of grove snails in Ireland dates to roughly the same era. Additionally, there is archaeological evidence of early sea trade between the ancient peoples of Spain and Ireland via the Atlantic and even evidence that humans routinely ate these types of snails before the advent of agriculture, as their burnt shells have been found in Stone Age trash heaps.The simplest explanation, then? Boats. These snails may have inadvertently traveled on the floor of the small, coast-hugging skiffs these early humans used for travel, or they may have been intentionally carried to Ireland by the seafarers as a food source. “The highways of the past were rivers and the ocean-as the river that flanks the Pyrenees was an ancient trade route to the Atlantic, what we’re actually seeing might be the long lasting legacy of snails that hitched a ride…as humans travelled from the South of France to Ireland 8,000 years ago,” Davidson said.The passage outlines several hypotheses and evidence related to white-lipped grove snails to arrive at the most convincing explanation for:
 ...
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.The difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and palaeontologists. To varying degrees each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behaviour. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made2 1 inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 Could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans. How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance on human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance.The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispaniola, New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents. Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulae, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities.Why do islands with considerable degree of isolation provide valuable insights into human history?
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions