1. Secretaries’ Day, National Civil Service Day, World Creativity and Innovation Day

Answer: 2017-04-21 00:00:00

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Whats the day of/date of "Secretaries’ Day, National Civil Service Day, World Creativity and Innovation Day"....
QA->Secretaries’ Day, National Civil Service Day, World Creativity and Innovation Day....
QA->Whichpolicy has approved by the Union Cabinet with a view to promoting creativity,innovation and entrepreneurship?....
QA->Whichcountry has topped Asia in innovation and has emerged as the third biggestcountry worldwide in terms of new innovation centres?....
QA->India and Nepal are recently launched second direct bus service between Nepal and India after the Kathmandu-Delhi bus service launched last year. The bus service will connect the cities?....
MCQ-> Read the passage and answer the questions that follow: Passage II Humans are pretty inventive creatures. That might be cause for optimism about the future of global change. We've found solutions to lots of problems in the past. And with a much larger and better-educated population than the world has ever seen — the supply of good ideas can only increase. So innovation will figure out a way to sustainable futures. But what is innovation? The media and companies routinely equate innovation with shiny new gadgets. In the same spirit, politicians charged with managing economies frequently talk as if all innovation is good. The history of almost any technology, however — from farming to applied nuclear physics — reveals a mixture of good and bad. The study of the concept of innovation, and of whether it can be steered, is a relatively recent academic effort. There are three ways that scholars have thought about innovation. The first was basically linear: science begets invention that begets innovation. Physics, for instance, gives us lasers, which give us —eventually — compact discs. Result: Growth! Prosperity! Rising living standards for all! From this perspective, it's assumed that science is the basis for long-term growth, and that innovation largely involves commercialisation of scientific discoveries. There is a role for the state, but only in funding the research. The rest can be left to the private sector. By the 1970s, economists interested in technology and some policy-makers were talking about something more complicated: national systems of innovation competing with each other. Such "systems" included measures to promote transfer of technology out of the lab, especially by building links between centres of discovery and technologists and entrepreneurs. The key failing of these two approaches is that they treat less desirable outcomes of innovation as externalities and are blind to the possibility that they may call for radically different technological priorities. The environmental effects of energy and materials-intensive industries may turn, out to be more destructive than we can handle. Radical system change is a third way to think about innovation. Technological trajectories aren't pre-ordained: Some paths arc chosen at the expense of others. And that's harder because it needs more than incremental change. The near future is about transformation. The more complex historical and social understanding of innovation now emerging leads to a richer concept of infrastructure, as part of a system with social and technical elements interwoven.An emphasis on the new, the experimental, the innovative - and on promoting social and technical solutions to global problems must overcome the sheer inertia of the systems we have already built - and are often still extending. Aiming for transformation leads to another take on creative destruction. It isn't enough to promote innovation as creation, the existing system has to be destabilized as well. System shifts of the radical kind envisaged will call for creation of a new infrastructure. But that won't do the job unless the old systems are deliberately removed on roughly the same time-scale. Achieving that will call for a lot more thought about how to if not destroy the old systems, at least set about dismantling them. From the passage we can conclude that the author believes
 ...
MCQ-> Read the passage given below and answer the questions that follow it:Does having a mood disorder make you more creative? That’s the most frequent question I hear about the relationship. But because we cannot control the instance of a mood disorder (that is, we can’t turn it on and off, and measure that person’s creativity under both conditions), the question should really be: Do individuals with a mood disorder exhibit greater creativity than those without? Studies that attempt to answer this question by comparing the creativity of individuals with a mood disorder against those without, have been well, mixed.Studies that ask participants to complete surveys of creative personality, behavior or accomplishment, or to complete divergent thinking measures (where they are asked to generate lots of ideas) often find that individuals with mood disorders do not differ from those without. However, studies using “creative occupation” as an indicator of creativity (based on the assumption that those employed in these occupations are relatively more creative than others) have found that people with bipolar disorders are overrepresented in these occupations. These studies do not measure the creativity of participants directly, rather they use external records (such as censuses and medical registries) to tally the number of people with a history of mood disorders (compared with those without) who report being employed in a creative occupation at some time. These studies incorporate an enormous number of people and provide solid evidence that people who have sought treatment for mood disorders are engaged in creative occupations to a greater extent than those who have not. But can creative occupations serve as a proxy for creative ability?The creative occupations considered in these studies are overwhelmingly in the arts, which frequently provide greater autonomy and less rigid structure than the average nine-to-five job. This makes these jobs more conducive to the success of individuals who struggle with performance consistency as the result of a mood disorder. The American psychiatrist Arnold Ludwig has suggested that the level of emotional expressiveness required to be successful in various occupations creates an occupational drift and demonstrated that the pattern of expressive occupations being associated with a greater incidence of psychopathology is a self-repeating pattern. For example, professions in the creative arts are associated with greater psychopathology than professions in the sciences whereas, within creative arts professions, architects exhibit a lower lifetime prevalence rate of psychopathology than visual artists and, within the visual arts, abstract artists exhibit lower rates of psychopathology than expressive artists. Therefore, it is possible that many people who suffer from mood disorders gravitate towards these types of professions, regardless of creative ability or inclination.Go through the following:1.Mood disorders do not lead to creativity 2.The flexibility of creative occupations makes them more appealing to people with mood disorder 3.Mood swings in creative professions is less prevalent than in non-creative professionsWhich of the following would undermine the passage’s main argument?...
MCQ-> Read the following passage carefully and answer the questions given below. Certain words in the passage have been printed in bold to help you locate them when answering some of the questions.Can the last fifteen years be called the most successful decade and a half in Indian history and will the next fifteen be equally successful ? Consider a culture where independent thinking is not encouraged. Or take the example of traditional family run business with vast resistance to change or a whole nation who believes that breakthrough ideas can be generated abroad but never at home. Partly responsible is socialization from early years we are taught not to question our elders but at workplaces this creates a hurdle for new thinking. Being unable to change radically gives rise to a culture where even the smallest change is heralded as a breakthrough. Indian corporate leaders have done well standing up to global giants as their companies have grown in size and market share. To be successful in international markets they need to be distinct-distinct products, processes, technologies, business models and organizations.The bottom line will be Innovation. Creativity workshops are organized to channel people to think differently. There are fantastic ideas being generated all the time but no industry breakthrough. Simply because of gravity-a regressive force exerted by a mindset. Thinking has therefore to happen at three levels: idea, frame and paradigm. From a narrow focus on either product or process innovation organizations need to look at innovating the whole ecosystem of the organization. Many a time waiting for a hundred percent solution before going to the market the organization forgets that it could end up waiting forever. Moreover sometimes organizations are too focused on today to see tomorrow. Since management mandates are short-term, sowing the seed for a revenue stream today and leaving its been ts to be reaped by a successor doesn't appeal to today's business leader. This is a serious hurdle to innovation. Establishing a function called innovation management or training employees through creativity workshops will have few benefits unless each frontline employee is empowered to share his innovative ideas with the management. What happens to this system when the person driving the change leaves the organization ? The approach to innovation hence needs to be system driven rather than people driven. In thirty years India can be the largest world economy save China and the US. However as companies grow there exists a resemblance in their products, services, promotions, processes and pricing and so on. There remains only one escape from this trap. The main idea of the passage is :
 ...
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ...
MCQ-> Read the following passages carefully and answer the questions given at the end of each passage.PASSAGE 1In a study of 150 emerging nations looking back fifty years, it was found that the single most powerful driver of economic booms was sustained growth in exports especially of manufactured products. Exporting simple manufactured goods not only increases income and consumption at home, it generates foreign revenues that allow the country to import the machinery and materials needed to improve its factories without running up huge foreign bills and debts. In short, in the case of manufacturing, one good investment leads to another. Once an economy starts down the manufacturing path, its momentum can carry it in the right direction for some time. When the ratio of investment to GDP surpasses 30 percent, it tends to stick at the level for almost nine years (on an average). The reason being that many of these nations seemed to show a strong leadership commitment to investment, particularly to investment in manufacturing. Today various international authorities have estimated that the emerging world need many trillions of dollars in investment on these kinds of transport and communication networks. The modern outlier is India where investment as a share of the economy exceeded 30 percent of GDP over the course of the 2000s, but little of that money went into factories. Indian manufacturing had been stagnant for decades at around 15 percent of GDP. The stagnation stems from the failures of the state to build functioning ports and power plants and to create an environment in which the rules governing labour, land and capital are designed and enforced in a way that encourages entrepreneurs to invest, particularly in factories. India has disappointed on both counts creating labour friendly rules and workable land acquisition norms. Between 1989 and 2010 India generated about ten million new jobs in manufacturing, but nearly all those jobs were created in enterprises that are small and informal and thus better suited to dodge India’s bureaucracy and its extremely restrictive rules regarding firing workers It is commonly said in India that the labour laws are so onerous that it is practically impossible to comply with even half of them without violating the other half.Informal shops, many of them one man operations, now account for 39 percent of India’s manufacturing workforce, up from 19 percent in 1989 and they are simply too small to compete in global markets. Harvard economist Dani Rodrik calls manufacturing the “automatic escalator” of development, because once a country finds a niche in global manufacturing, productivity often seems to start rising automatically. During its boom years India was growing in large part on the strength of investment in technology service industries, not manufacturing. This was put forward as a development strategy. Instead of growing richer by exporting even more advanced manufactured products, India could grow rich by exporting the services demanded in this new information age. These arguments began to gain traction early in the 2010s.In new research on the “service escalators”, a 2014 working paper from the World Bank made the case that the old growth escalator in manufacturing was already giving way to a new one in service industries. The report argued that while manufacturing is in retreat as a share of the global economy and is producing fewer jobs, services are still growing, contributing more to growth in output and jobs for nations rich and poor. However, one basic problem with the idea of service escalator is that in the emerging world most of the new service jobs are still in very traditional ventures. A decade on, India’s tech sector is still providing relatively simple IT services mainly in the same back office operations it started with and the number of new jobs it is creating is relatively small. In India, only about two million people work in IT services, or less than 1 percent of the workforce. So far the rise of these service industries has not been big enough to drive the mass modernisation of rural farm economies. People can move quickly from working in the fields to working on an assembly line, because both rely for the most part on manual labour. The leap from the farm to the modern service sector is much tougher since those jobs often require advanced skills. Workers who have moved into IT service jobs have generally come from a pool of relatively better educated members of the urban middle class, who speak English and have atleast some facility with computers. Finding jobs for the underemployed middle class is important but there are limits to how deeply it can transform the economy, because it is a relatively small part of the population. For now, the rule is still factories first, not service first.According to the information in the above passage, manufacturing in India has been stagnant because there is
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions