1. One word Substitution of " Pull out of usual shape

Answer: Distort

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->One word Substitution of " Pull out of usual shape....
QA->Pull out of usual shape....
QA->One word Substitution of " Usual behaviour of a social group....
QA->What is the usual shape of the dealtas?....
QA->One word Substitution of " Word for word....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ...
MCQ-> Directions : Choose the word/group of words which is most opposite in meaning to the word / group of words printed in bold as used in the passage.When times are hard, doomsayers are aplenty. The problem is that if you listen to them too carefully, you tend to overlook the most obvious signs of change. 2011 was a bad year. Can 2012 be any worse? Doomsday forecasts are the easiest to make these days. So let's try a contrarian's forecast instead. Let's start with the global economy. We have seen a steady flow of good news from the US. The employment situation seems to be improving rapidly and consumer sentiment, reflected in retail expenditures on discretionary items like electronics and clothes, has picked up. If these trends sustain, the US might post better growth numbers for 2012 than the 1.5 - 1.8 percent being forecast currently. Japan is likely to pull out of a recession in 2012 as post-earthquake reconstruction efforts gather momentum and the fiscal stimulus announced in 2011 begin to pay off. The consensus estimate for growth in Japan is a respectable 2 percent for 2012. The "hard landing' scenario for China remains and will remain a myth. Growth might decelerate further from the 9 percent that is expected to clock in 2011 but is unlikely to drop below 8 - 8.5 percent in 2012. Europe is certainly in a spot of trouble. It is perhaps already in recession and for 2012 it is likely to post mildly negative growth. The risk of implosion has dwindled over the last few months- peripheral economies like Greece, Italy and Spain have new governments in place and have made progress towards genuine economic reform. Even with some these positive factors in place, we have to accept the fact that global growth in 2012 will be tepid. But there is a flipside to this. Softer growth means lower demand for commodities, and this is likely to drive a correction in commodity prices. Lower commodity inflation will enable emerging market central banks to reverse their monetary stance. China, for instance, has already reversed its stance and have pared its reserve ratio twice. The RBI also seems poised for a reversal in its rate cycle as headline inflation seems well one its way to its target of 7 percent for March 2012. That said, oil might be an exception to the general trend in commodities. Rising geopolitical tensions, particularly the continuing face-off between Iran and the US, might lead to a spurt in prices. It might make sense for our oil companies to hedge this risk instead of buying oil in the spot market. As inflation fears abate, and emerging market central banks begin to cut rates, two things could happen. Lower commodity inflation would mean lower interest rates and better credit availability. This could set the floor to growth and slowly reverse the business cycle within these economies. Second, as the fear of untamed, runaway inflation in these economies abates, the global investor's comfort levels with their markets will increase. Which of the emerging markets will outperform and who will leave behind? In an environment in which global growth is likely to be weak, economies like India that have a powerful domestic consumption dynamic should lead; those dependent on exports should, prima facie, fall behind. Specifically for India, a fall in the exchange rate could not have come at a better time. It will help Indian exporters gain market share even if global trade remains depressed. More importantly, it could lead to massive import substitution that favours domestic producers.Let’s now focus on India and start with a caveat. It is important not to confuse a short run cyclical dip with a permanent derating of its long-term structural potential. The arithmetic is simple. Our growth rate can be in the range of 7-10 percent depending on policy action. Ten percent if we get everything right, 7 percent if we get it all wrong. Which policies and reforms are critical to taking us to our 10 percent potential? In judging this, let’s again be careful. Let’s not go by the laundry list of reforms that FIIs like to wave: The increase in foreign equity limits in foreign shareholding, greater voting rights for institutional shareholders in banks, FDI in retail, etc. These can have an impact only at the margin. We need not bend over backwards to appease the FIIs through these reforms they will invest in our markets when momentum picks up and will be the first to exit when the momentum flags, reforms or not. The reforms that we need are the ones that can actually raise our sustainable longterm growth rate. These have to come in areas like better targeting of subsidies, making projects in infrastructure viable so that they draw capital, raising the productivity of agriculture, improving healthcare and education, bringing the parallel economy under the tax net, implementing fundamental reforms in taxation like GST and the direct tax code and finally easing the MYRIAD
 
rules and regulations that make doing business in India such a nightmare. A number of these things do not require new legislation and can be done through executive order.MYRIAD
 ...
MCQ-> Read the passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Long time ago, in a forest, there lived a young antelope. He was fond of the fruits of a particular tree. In a village bordering the forest, there lived a hunter who captured and killed antelopes for various reasons. He used to set traps for animals under fruit­bearing trees. When the animal came to eat the fruit, it would be caught in the trap. He would then take it away and kill it for its meat. One day, while visiting the forest in search of game, the hunter happened to see the antelope under its favourite tree, eating fruit. He was delighted. ‘What a big, plump antelope!’ he thought. ‘I must catch him. I will get a lot of money from selling his meat.’ Thereafter, for many days, the hunter kept track of the antelope’s movements. He realised that the antelope was remarkably vigilant and fleet footed animal that it would be virtually impossible for him to track him down. However, he had a weakness for that particular tree. The crafty concluded that he could use this weakness to capture him. Early one morning, the hunter entered the forest with some logs of wood. He climbed the tree and put up a machan (platform used by hunters) on one of its branches by tying the logs together. Having set his trap at the foot of the tree, he then took up position on the machan and waited for the antelope. He strewed a lot of iy ,ovef mrui bts eo rn2thoeig6round beneath the 11.004.3, tree to conceal the trap and lure the antelope. Soon, the antelope came strolling along. He was very hungry and was eagerly looking forward to his usual breakfast of delicious ripe fruits. On the tree­top, the hunter, having sighted him, sat with bated breath, willing him to come closer and step into his trap. However, the antelope was no fool. As he neared the tree he stopped short. The number of fruits lying under the tree seemed considerably more than usual. Surely, something was amiss, decided the antelope. He paused just out of reach of the tree and carefully began examining the ground. Now, he saw what distinctly looked like a human footprint. Without going closer, he looked suspiciously at the tree. The hunter was well hidden in its thick foliage, nevertheless the antelope, on close scrutiny, was now sure that his suspicions had not been unfounded. He could see a corner of the machan peeping out of the leaves. Meanwhile the hunter was getting desperate. Suddenly, he had a brainwave. Let me try throwing some fruit at him,’ he thought. So the hunter plucked some choice fruits and hurled them in the direction of the antelope. Alas, instead of luring him closer, it only confirmed his fears! Raising his voice, he spoke in the direction of the tree —”Listen, my dear tree, until now you have always dropped your fruits on the earth. Today, you have started throwing them at me! This is the most unlikely action of yours and I’m not sure I like the change! Since you have changed your habits, I too will change mine. I will get my fruits from a different tree from now on­one that still acts like a tree!’ The hunter realised that the antelope had outsmarted him with his cleverness. Parting the leaves to reveal himself, he I grabbed his javelin and flung it wildly at the antelope. But the clever antelope was well prepared for any such action on his part. Giving a saucy chuckle, he leapt nimbly out of the harm’s way.As mentioned in the story, which of the following can be said about the hunter ?
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. Long ago, a Brahmin called Haridatta lived in a little village. He was a farmer but the piece of land he cultivated provided him with so little to survive on that he was very poor. One day, unable to stand the heat of the summer sun, he went to rest for a whilevunder a big tree on his land. Before he could stretch out on the ground, he saw a huge black cobra slithering out of an anthill nearby. The snake then spread hisvhood and swayed gracefully from side to side. Haridatta was astonished tov seevthis and he thought, “This cobra must really be the god of this land. I have nevervseen or worshipped him before, which is probably why I am not able to get anything from the land. From this day onwards, I will worship him.” He hurried back to his home at once and returned with a glass full of milk. He poured it into a bowl and turning to the anthill said, “0 ruler of the land, I did not know you were living in this anthill. That is why I have not paid my tribute to you. Please accept my apologies for this omission and accept this humble offering.” He then placed the bowl of milk at the entrance of the anthill and left the place. The next day when the Brahmin arrived to work on his land before the sun rose, he found a gold coin in the bowl he had left at the anthill. He was very happy indeed and from that day on, he made it a practice to offer the cobra milk in a bowl each day. The next morning he would collect a gold coin and leave. One day Haridatta had to go to a neighbouring village on business. He asked his son to go to the anthill as usual and leave a bowl of milk for the cobra. The son did as he was told, but when he went to the same spot the next day and collected the gold coin he thought, “This anthill must be full of gold. If I kill the cobra, I can collect all the gold in an instant, instead of having to waste my time coming here every day.” He then struck the cobra with a big stick. The cobra deftly dodged the blow but bit Haridatta’s son with his poisonous fangs. The boy soon died. When Haridatta returned to his village the next day, he heard how his son had met his death. He realised at once that his son’s greed would probably have caused him to attack the cobra. The Brahmin went to the anthill the day after his son’s cremation and offered milk to the cobra as usual. This time, the cobra did not even come out of his hole. Instead, he called out to Haridatta, “You have come here for gold, forgetting That you have just lost a precious son and that you are in mourning. The reason for this is pure greed. From today, there is no meaning to our relationship. I am going to give you a diamond as a final gift. But please don’t ever come back again.” He slithered away as the Brahmin watched.Which of the following is TRUE according to the story ?
 ...
MCQ->Which of the following statements is/are true? A. Rigidity: According to the type of matter, shape differs, depending upon location of particles. Eg, solids have definite shape while liquids acquire the shape of their container and gases, as such, don't have any shape. B. Compressibility: It is the property of matter to allow a decrease in volume under high pressure and gases show this property....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions