1. One word Substitution of " Science and philosophy of human law

Answer: Jurisprudence

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->One word Substitution of " Science and philosophy of human law....
QA->Science and philosophy of human law....
QA->One word Substitution of " Science of the races of mankind and their relation to one another....
QA->One word Substitution of " Science and art of preparing and making good food....
QA->One word Substitution of " Science of writing and compiling a dictionary....
MCQ-> The conceptions of life and the world which we call ‘philosophical’ are a product of two factors: one inherited religious and ethical conceptions; the other, the sort of investigation which may be called ‘scientific’, using this word in its broadest sense. Individual philosophers have differed widely in regard to the proportions in which these two factors entered into their systems, but it is the presence of both, in some degree, that characterizes philosophy.‘Philosophy’ is a word which has been used in many ways, some wider, some narrower. I propose to use it in a very wide sense, which I will now try to explain.Philosophy, as I shall understand the word, is something intermediate between theology and science. Like theology, it consists of speculations on matters as to which definite knowledge has, so far, been unascertainable; but like science, it appeals to human reason rather than to authority, whether that of tradition or that of revelation. All definite knowledge so I should contend belongs to science; all dogma as to what surpasses definite knowledge belongs to thelogy. But between theology and science there is a ‘No man’s Land’, exposed to attack from both sides; this ‘No Man’s Land’ is philosophy. Almost all the questions of most interest to speculative minds are such as science cannot answer, and the confident answers of theologians no longer seem so convincing as they did in former centuries. Is the world divided into mind and matter, and if so, what is mind and what is matter? Is mind subject to matter, or is it possessed of independent powers? Has the universe any unity or purpose? It is evolving towards some goal? Are there really laws of nature, or do we believe in them only because of our innate love of order? Is man what he seems to the astronomer, a tiny lump of carbon and water impotently crawling on a small and unimportant planet? Or is he what he appears to Hamlet? Is he perhaps both at once? Is there a way of living that is noble and another that is base, or are all ways of living merely futile? If there is a way of living that is noble, in what does it consist, and how shall we achieve it? Must the good be eternal in order to deserve to be valued, or is it worth seeking even if the universe is inexorably moving towards death? Is there such a thing as wisdom, or is what seems such merely the ultimate refinement of folly? To such questions no answer can be found in the laboratory. Theologies have professed to give answers, all too definite; but their definiteness causes modern minds to view them with suspicion. The studying of these questions, if not the answering of them, is the business of philosophy.Why, then, you may ask, waste time on such insoluble problems? To this one may answer as a historian, or as an individual facing the terror of cosmic loneliness.The answer of the historian, in so far as I am capable of giving it, will appear in the course of this work. Ever since men became capable of free speculation, their actions in innumerable important respects, have depended upon their theories as to the world and human life, as to what is good and what is evil. This is as true in the present day as at any former time. To understand an age or a nation, we must understand its philosophy, and to understand its philosophy we must ourselves be in some degree philosophers. There is here a reciprocal causation: the circumstances of men’s lives do much to determine their philosophy, but, conversely, their philosophy does much to determine their circumstances.There is also, however, a more personal answer. Science tells us what we can know, but what we can know is little, and if we forget how much we cannot know we may become insensitive to many things of very great importance. Theology, on the other hand, induces a dogmatic belief that we have knowledge, where in fact we have ignorance, and by doing so generates a kind of impertinent insolence towards the universe. Uncertainty, in the presence of vivid hopes and fears, is painful, but must be endured if we wish to live without the support of comforting fairy tales. It is good either to forget the questions that philosophy asks, or to persuade ourselves that we have found indubitable answers to them. To teach how to live without certainty, and yet without being paralyzed by hesitation, is perhaps the chief thing that philosophy, in our age, can still do for those who study it.The purpose of philosophy is to
 ...
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ...
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.The difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and palaeontologists. To varying degrees each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behaviour. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made2 1 inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 Could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans. How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance on human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance.The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispaniola, New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents. Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulae, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities.Why do islands with considerable degree of isolation provide valuable insights into human history?
 ...
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions