1. Which Bacteria convert atmospheric nitrogen into nitrogenous compound?

Answer: Nitrogen fixing bacteria

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which Bacteria convert atmospheric nitrogen into nitrogenous compound?....
QA->Conversion of atmospheric nitrogen into useful compounds like nitrates with the help of bacteria and fungi is known as ?....
QA->Which compound can not be used as nitrogenous fertilizer?....
QA->Which compound does not give a positive test in Lassaigne’s test for nitrogen?....
QA->The Nitrogen compound used as both fertilizer and explosive:....
MCQ->Nitrogen fixation refers to the direct conversion of atmospheric nitrogen gas into...
MCQ->Assertion (A): Conversion of solid nitrates $$(NO3^-)$$ into gaseous Nitrogen($$N_2$$) by bacteria is called denitrification. Reason (R): Denitrifying bacteria grow in wet soils....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ...
MCQ-> The narrative of Dersu Uzala is divided into two major sections, set in 1902, and 1907, that deal with separate expeditions which Arseniev conducts into the Ussuri region. In addition, a third time frame forms a prologue to the film. Each of the temporal frames has a different focus, and by shifting them Kurosawa is able to describe the encroachment of settlements upon the wilderness and the consequent erosion of Dersu’s way of life. As the film opens, that erosion has already begun. The first image is a long shot of a huge forest, the trees piled upon one another by the effects of the telephoto lens so that the landscape becomes an abstraction and appears like a huge curtain of green. A title informs us that the year is 1910. This is as late into the century as Kurosawa will go. After this prologue, the events of the film will transpire even farther back in time and will be presented as Arseniev’s recollections. The character of Dersu Uzala is the heart of the film, his life the example that Kurosawa wishes to affirm. Yet the formal organization of the film works to contain, to close, to circumscribe that life by erecting a series of obstacles around it. The film itself is circular, opening and closing by Dersu’s grave, thus sealing off the character from the modern world to which Kurosawa once so desperately wanted to speak. The multiple time frames also work to maintain a separation between Dersu and the contemporary world. We must go back father even than 1910 to discover who he was. But this narrative structure has yet another implication. It safeguards Dersu’s example, inoculates it from contamination with history, and protects it from contact with the industrialised, urban world. Time is organised by the narrative into a series of barriers, which enclose Dersu in a kind of vacuum chamber, protecting him from the social and historical dialectics that destroyed the other Kurosawa heroes. Within the film, Dersu does die, but the narrative structure attempts to immortalise him and his example, as Dersu passes from history into myth. We see all this at work in the enormously evocative prologue. The camera tilts down to reveal felled trees littering the landscape and an abundance of construction. Roads and houses outline the settlement that isbeing built. Kurosawa cuts to a medium shot of Arseniev standing in the midst of the clearing, lookinguncomfortable and disoriented. A man passing in a wagon asks him what he is doing, and the explorersays he is looking for a grave. The driver replies that no one has died here, the settlement is too recent. These words enunciate the temporal rupture that the film studies. It is the beginning of things (industrial society) and the end of things (the forest), the commencement of one world so young that no one has had time yet to die and the eclipse of another, in which Dersu had died. It is his grave for which the explorer searches. His passing symbolises the new order, the development that now surrounds Arseniev. The explorer says he buried his friend three years ago next to huge cedar and fir trees, but now they are all gone. The man on the wagon replies they were probably chopped down when the settlement was built, and he drives off. Arseniev walks to a barren, treeless spot next to a pile of bricks. As he moves, the camera tracks and pans to follow, revealing a line of freshly built houses and a woman hanging her laundry to dry. A distant train whistle is heard, and the sounds of construction in the clearing vie with the cries of birds and the rustle of wind in the trees. Arseniev pauses, looks around for the grave that once was, and murmurs desolately, ‘Dersu’. The image now cuts farther into the past, to 1902, and the first section of the film commences, which describes Arseniev’s meeting with Dersu and their friendship. Kurosawa defines the world of the film initially upon a void, a missing presence. The grave is gone, brushed aside by a world rushing into modernism, and now the hunter exists only in Arseniev’s memories. The hallucinatory dreams and visions of Dodeskaden are succeeded by nostalgic, melancholy ruminations. Yet by exploring these ruminations, the film celebrates the timelessness of Dersu’s wisdom. The first section of the film has two purposes: to describe the magnificence and in human vastness of nature and to delineate the code of ethics by which Dersu lives and which permits him to survive in these conditions. When Dersu first appears, the other soldiers treat him with condescension and laughter, but Arseniev watches him closely and does not share their derisive response. Unlike them, he is capable of immediately grasping Dersu’s extraordinary qualities. In camp, Kurosawa frames Arseniev by himself, sitting on the other side of the fire from his soldiers. While they sleep or joke among themselves, he writes in his diary and Kurosawa cuts in several point-of-view shots from his perspective of trees that appear animated and sinister as the fire light dances across their gnarled, leafless outlines. This reflective dimension, this sensitivity to the spirituality of nature, distinguishes him from the others and forms the basis of his receptivity to Dersu and their friendship. It makes him a fit pupil for the hunter.How is Kurosawa able to show the erosion of Dersu’s way of life?
 ...
MCQ->Which of the following nitrogenous fertilisers has the highest percentage of nitrogen ?...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions