1. What does Every object at a temperature above absolute zero?

Answer: Radiates energy

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->What does Every object at a temperature above absolute zero?....
QA->At absolute zero temperature; what will be the kinetic energy of the molecules?....
QA->At absolute zero temperature, what will be the kinetic energy of the molecules?....
QA->Which energy of the electron at absolute zero is called?....
QA->In which type of climate does the temperature never rise above 10°C throughout the year?....
MCQ->A person standing on the ground at point A saw an object at point B on the ground at a distance of 600 meters. The object started flying towards him at an angle of 30° with the ground. The person saw the object for the second time at point C flying at 30° angle with him. At point C, the object changed direction and continued flying upwards. The person saw the object for the third time when the object was directly above him. The object was flying at a constant speed of 10 kmph. Find the angle at which the object was flying after the person saw it for the second time. You may use additional statement(s) if required. Statement I: After changing direction the object took 3 more minutes than it had taken before. Statement II: After changing direction the object travelled an additional 200√3 meters. Which of the following is the correct option?...
MCQ-> Applicants for the doctoral programmes of Ambi Institute of Engineering (AIE) and Bambi Institute of Engineering (BIE) have to appear for a Common Entrance Test (CET). The test has three sections: Physics (P), Chemistry (C), and Maths (M). Among those appearing for CET, those at or above the 80th percentile in at least two sections, and at or above the 90th percentile overall, are selected for Advanced Entrance Test (AET) conducted by AIE. AET is used by AIE for final selection.For the 200 candidates who are at or above the 90th percentile overall based on CET, the following are known about their performance in CET: 1. No one is below the 80th percentile in all 3 sections. 2. 150 are at or above the 80th percentile in exactly two sections. 3. The number of candidates at or above the 80th percentile only in P is the same as the number of candidates at or above the 80th percentile only in C. The same is the number of candidates at or above the 80th percentile only in M. 4. Number of candidates below 80th percentile in P: Number of candidates below 80th percentile in C: Number of candidates below 80th percentile in M = 4:2:1.BIE uses a different process for selection. If any candidate is appearing in the AET by AIE, BIE considers their AET score for final selection provided the candidate is at or above the 80th percentile in P. Any other candidate at or above the 80th percentile in P in CET, but who is not eligible for the AET, is required to appear in a separate test to be conducted by BIE for being considered for final selection. Altogether, there are 400 candidates this year who are at or above the 80th percentile in P.What best can be concluded about the number of candidates sitting for the separate test for BIE who were at or above the 90th percentile overall in CET?
 ...
MCQ-> Analyze the following passage and provide appropriate answers for the questions that follow. Either explicitly or implicitly, our informants suggest that the objects that transfix them are hoped to be conduits to, rather than surrogates for, love, respect, recognition, status, security, escape, or attractiveness. These are the social relations we desire, consciously or subconsciously, beneath the objects that we find so compelling. The value of the objects that we focus our longing upon inheres less in the object or in a Lacanian search for childhood love than in the culture. The hope for the hope that an altered state of being may result keeps the cycle of desire moving. Desires are nurtured by self-embellished fantasies of a wholly different self, and they may be stimulated by external sources, including advertising, retail displays, films, television programs, stories told by other people, and the consumption behavior of real or imaginary others. But we find that the person who feels strong desire has almost always actively stimulated this desire by attending, seeking out, entertaining, and embellishing such images. The desires that occupy us are vivid and riveting fantasies that we participate in nurturing, growing, and pursuing, through self-seduction. The social nature of desire implies that preferences of consumers are far from being independent. Yet, choice models assume that preferences of consumers act as individuals. The mimetic aspect of desire creates difficulties for using individual attitude or intention measures to predict adoption of new products whose use will be visible. The notion of desire we have derived suggests that the appeal of the desired object is not inherent in the object itself. Models that begin with preferences for product attributes or benefits are therefore problematic. The consumer, individually and jointly, has a role in constructing the object of desire, within a social context. What makes consumer desire attach to a particular object is not so much the object’s particular characteristics as the consumer’s own hopes for an altered state of being,involving an altered set of social relationships.Consider the statement given below as true: “The failure of men to transition from being shoppers and consumers to producers and creators has implications about their manliness.” Which of the following statements would concur with the above idea and the theme of the main paragraph?...
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ...
MCQ->Which of the following statements are correct about the C#.NET code snippet given below? sample c; c = new sample(); It will create an object called sample. It will create a nameless object of the type sample. It will create an object of the type sample on the stack. It will create a reference c on the stack and an object of the type sample on the heap. It will create an object of the type sample either on the heap or on the stack depending on the size of the object....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions