1. ….is calculated by taking a measure of all sources of income in the aggregate and dividing it by the total population?

Answer: Percapita Income

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->….is calculated by taking a measure of all sources of income in the aggregate and dividing it by the total population?....
QA->Who has been appointed as one-man committee by the Ministry of Railways to suggest a "proper system and procedure to ensure proper accountability and transparency" at General Manager level and other functionaries level for taking all commercial decisions?....
QA->Who has become the second player to aggregate at least 1,000 runs in each of the last four years in One-Day Internationals (ODI)?....
QA->Which bill recently passed by Parliament, seeks to deal with the menace of black money and replace the Income Tax Act, 1961 for the taxation of foreign income?....
QA->Low income and middle income countries are known as?....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ-> Read the following passage carefully and answer the question given below it.Certain words/phrases have been printed in bold to help you locate them while answering some of the questions.Once upon a time a dishonest King had a man call the Valuer in his court. The Valuer set the price which ought to be paid for horses and elephants and the other animals.He also set the price on jewellery and gold.and things of that kind.This man was honest and just and set the proper price to be paid to the owners of the goods.The King however was not pleased with this Valuer because he was honest ‘If I had another sort of a man as Valuer I might gain more riches, he thought One day the King saw a stupid miserly peasant come into the place yard.The King sent for the fellow and asked him if he would like to be Valuer.The peasant said he would like the position.So the King had him made Valuer He sent the honest Valuer away from the place.Then the peasant began to set the prices on horses and elephants upon gold and jewels.He did not know their value so he would say anything he chose.As the King had made him Valuer the People had to sell their goods for the price he set. By and by a horse-dealer brought five hundred horses to the court of this King.The Valuer came and said they were worth a mere measure of rice and the horses to be put in the palace stables. The horse-dealer went then to see the honest man who had been the Valuer and told him what had happened.’What shall I do ?’ asked the horses-dealer “I think you can give a present to the Valuer which will make him “Go to him and give him a fine present then say to him You said the horses are worth a measure of rice,but now tell what a measure of rice is worth ! Can you value that standing in your place by the King ?’ If he says he can go with him to the King and I will be there too” The horses-dealer thought this was a good idea.So he took a fine present to the Valuer and said what the other man had told him to say.The stupid Valuer took the present,and said,”Yes, I can go before the King with you and tell what a measure of rice is worth.I can go before the King with you and tell what a measure of rice is worth. I can value now. Well let us go at once” said the horses-dealer.So they went before the king and his ministers in the palace.The horses-dealer bowed down before the King and said “O King I have learned that a measure of rice is the value of my five hundred horses.But will the King be pleased to ask the Valuer what had happened asked,How now Valuer what are five hundred horses worth ? “A measure of rice O King !” said he “very good then ! If five hundred horses are worth a measure of rice what is the measure of rice worth ?” The measure of rice is worth your whole city” replied the foolish fellow The minister clapped their hands laughing and saying “What a foolish Valuer! How can such a man hold that office ? We used to think this great city was beyond price but this man says it is worth only a measure of rice.Then the King was ashamed and drove out the foolish fellow “I tried to please the King by setting a low price on the horses and now see what has happened to me !’ said the Valuer as he ran away from the laughing crowd.Who did the King appoint as the new Valuer ?
 ...
MCQ-> Study the given information carefully to answer the given questions.M, N, O, P, Q R and S are seven people live on seven different floors of a building but not necessarily in the same order. The lower most floor of the building is numbered 1, the one above that is numbered 2 and so on till the topmost floor is numbered 7. Each one of them have different income i.e., 3500, 15000, 7500, 9000, 11000, 13500 and 5000. (But not necessarily in the same order.) M lives on an odd numbered floor but not on the floor numbered 3. The one who has income of 11000 lives immediately above M. Only two people live between M and the one who has income of 7500. The one who has income of 15000 lives on one of the odd numbered floors above P. Only three people live between 0 and the one who has income of 15000. The one who has income of 7500 lives immediately above 0. R earns 4000 more than Q. The one who has income of 3500 lives immediately above the one who has income of 5000. S lives on an odd numbered floor. Only one person lives between N and Q. N lives on one of the floors above Q. Neither 0 nor M has income of 0000. Q does not has income of ­500. How much income M has ?
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions.There are various sectors in India that are to be assessed for their strengths, weaknesses, opportunities and threats. The total population is over 1 billion which will increase to 1.46 billion by 2035 to cross China. The huge population will result in higher unemployment and deterioration of quality. Literacy, in India is yet another factor to be discussed. According to 1991 census, 64.8% of the population was illiterate. The major downtrend of education is due to child labour which has spread all over India and this should be totally eradicated by way of surveillance and a good educational system implemented properly by the Government. Pollution is one more threat to the environment and for the country’s prospects. This has been experienced more in urban areas mainly in metropolitan cities. The water pollution by the sewage seepage into the ground water and improper maintenance will lead to various diseases which in turn will affect the next generation. In most of the cities there is no proper sewage disposal. The Government has to take effective steps to control population which, in turn, will minimize the pollution. Poverty questions the entire strength of India’s political view and minimizes the energetic way of approach. The shortfall of rains, enormous floods, unexpected famine, drought, earthquake and the recent tsunami hit the country in a negative way. The proactive approach through effective research and analytical study helps us to determine the effects in advance. Proper allocation of funds is a prerequisite. In developed countries like. U.S., Japan precautionary methods are adopted to overcome this, but it has to be improved a lot in our systems. Increased population is one of the major reasons for poverty and the Government is unable to allocate funds for basic needs to the society. India has nearly 400 million people living below the poverty line and 90% of active population is in informal economy. The children are forced to work due to their poverty and differential caste system. They work in match industry for daily wages, as servants, mechanics, stone breakers, agricultural workers, etc. To prevent child labour, existing laws which favour the Anti Child Labour Act should be implemented by the Government vigorously. More population results in cheap cost by virtue of the demand supply concept. Most of the foreign countries try to utilize this factor by outsourcing their business in India with a very low capital. According to U.S., India is a “Knowledge pool” with cheap labour. The major advantage is our communication and technical skill which is adaptable to any environment. The cutting edge skill in IT of our professionals helps the outsourcing companies to commensurate with the needs of the consumers in a short span. The major competitors for India are China and Philippines and by the way of an effective communication and expert technical ability, Indians are ahead of the race. The major Metropolitan states are targeting the outsourcing field vigorously by giving various amenities to the outsourcing companies like tax concession, allotting land etc., to start their businesses in its cities without any hurdles. Thereby most of the MNCs prefer India as their destinations and capitalize the resources to maximize their assets. Infrastructure is another key factor for an outsourcing company to start a business in a particular city. It includes road, rail, ports, power and water. The increased input in infrastructure in India is very limited where China’s record is excellent. India in earlier days gave more importance to the development of industry and less importance to other departments. But the scenario has quite changed nowadays by allocating a special budget of funds for security. This is because of the frightening increase in terrorism all around the world especially emerging after the 9/11 terror attack in U.S. In the last ten years, budget towards the development of military forces is higher when compared to others. It shows that the threat from our neighbouring countries is escalating. India has to concentrate more on this security factor to wipe out the problem in the way of cross border terrorism. Making India, a developed country in 2020 is not an easy task. India has to keep in check a variety of factors in order to progress rapidly. To quote China as an example is that they demolished an old building to construct a very big port to meet future demands, but India is still waiting for things to happen. The profits gained by India through various sectors are to be spent for the development and welfare of the country. India’s vision for a brighter path will come true not only by mere words or speech, but extra effort needed at all levels to overcome the pitfalls.Which of the following, according to the author, is/are a result(s) of increased population in India ? (A) Pollution (B)Poverty (C) Unemployment...
MCQ-> Read the following passage carefully and answer the questions given. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. From a technical and economic perspective, many assessments have highlighted the presence of cost-effective opportunities to reduce energy use in buildings. However several bodies note the significance of multiple barriers that prevent the take-up of energy efficiency measures in buildings. These include lack of awareness and concern, limited access to reliable information from trusted sources, fear about risk, disruption and other ‘transaction costs’ concerns about up-front costs and inadequate access to suitably priced finance, a lack of confidence in suppliers and technologies and the presence of split incentives between landlords and tenants. The widespread presence of these barriers led experts to predict thatwithout a concerted push from policy, two-thirds of the economically viable potential to improve energy efficiency will remain unexploited by 2035. These barriers are albatross around the neck that represent a classic market failure and a basis for governmental intervention. While these measurements focus on the technical, financial or economic barriers preventing the take-up of energy efficiency options in buildings, others emphasise the significance of the often deeply embedded social practices that shape energy use in buildings. These analyses focus not on the preferences and rationalities that might shape individual behaviours, but on the ‘entangled’ cultural practices, norms, values and routines that underpin domestic energy use. Focusing on the practice-related aspects of consumption generates very different conceptual framings and policy prescriptions than those that emerge from more traditional or mainstream perspectives. But the underlying case for government intervention to help to promote retrofit and the diffusion of more energy efficient particles is still apparent, even though the forms of intervention advocated are often very different to those that emerge from a more technical or economic perspective. Based on the recognition of the multiple barriers to change and the social, economic and environmental benefits that could be realised if they were overcome, government support for retrofit (renovating existing infrastructure to make it more energy efficient) has been widespread. Retrofit programmes have been supported and adopted in diverse forms in many setting and their ability to recruit householders and then to impact their energy use has been discussed quite extensively. Frequently, these discussions have criticised the extent to which retrofit schemes rely on incentives and the provision of new technologies to change behaviour whilst ignoring the many other factors that might limit either participation in the schemes or their impact on the behaviours and prac-tices that shape domestic energy use. These factors are obviously central to the success of retrofit schemes, but evaluations of different schemes have found that despite these they can still have significant impacts. Few experts that the best estimate of the gap between the technical potential and the actual in-situ performance of energy efficiency measures is 50%, with 35% coming from performance gaps and 15% coming from ‘comfort taking’ or direct rebound effects. They further suggest that the direct rebound effect of energy efficiency measures related to household heating is Ilkley to be less than 30% while rebound effects for various domestic energy efficiency measures vary from 5 to 15% and arise mostly from indirect effects (i.e., where savings from energy efficiency lead to increased demand for goods and services). Other analyses also note that the gap between technical potential and actual performance is likely to vary by measure, with the range extending from 0% for measures such as solar water heating to 50% for measures such as improved heating controls. And others note that levels of comfort taking are likely to vary according to the levels of consumption and fuel poverty in the sample of homes where insulation is installed, with the range extending from 30% when considering homes across all income groups to around 60% when considering only lower income homes. The scale of these gapsis significant because it materially affects the impacts of retrofit schemes and expectations and perceptions of these impacts go on to influence levels of political, financial and public support for these schemes. The literature on retrofit highlights the presence of multiple barriers to change and the need for government support, if these are to be overcome. Although much has been written on the extent to which different forms of support enable the wider take-up of domestic energy efficiency measures, behaviours and practices, various areas of contestation remain and there is still an absence of robust ex-post evidence on the extent to which these schemes actually do lead to the social, economic and environmental benefits that are widely claimed.Which of the following is most nearly the OPPOSITE in meaning to the word ‘CONCERTED’ as used in the passage ?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions