1. The best procedure for opening an account in the name of a minor X and the guardian Y would under the style:

Answer: Y in trust for X

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The best procedure for opening an account in the name of a minor X and the guardian Y would under the style:....
QA->A Savings Bank account in the sole name of a minor can be opened provided he completed:....
QA->Theworld’s first baby was born from a new procedure that combines the DNA of threepeople. What is the name of the procedure?....
QA->A minor division of office consisting of a superintendent and one or more clerks under him is called:....
QA->Which scheme, launched under the Beti Bachao Beti Padhao campaign, aims all girls under 10 years to open account in post offices or in Banks?....
MCQ-> Read the  following  discussion/passage  and provide an appropriate answer for the questions that follow. Of the several features of the Toyota Production System that have been widely studied, most important is the mode of governance of the shop - floor at Toyota. Work and inter - relations between workers are highly scripted in extremely detailed ‘operating procedures’ that have to be followed rigidly, without any deviation at Toyota. Despite such rule - bound rigidity, however, Toyota does not become a ‘command - control system’. It is able to retain the character of a learning organizationIn fact, many observers characterize it as a community of scientists carrying out several small experiments simultaneously. The design of the operating procedure is the key. Every principal must find an expression in the operating procedure – that is how it has an effect in the domain of action. Workers on the shop - floor, often in teams, design the ‘operating procedure’ jointly with the supervisor through a series of hypothesis that are proposed and validated or refuted through experiments in action. The rigid and detailed ‘operating procedure’ specification throws up problems of the very minute kind; while its resolution leads to a reframing of the procedure and specifications. This inter - temporal change (or flexibility) of the specification (or operating procedure) is done at the lowest level of the organization; i.e. closest to the site of action. One implication of this arrangement is that system design can no longer be rationally optimal and standardized across the organization. It is quite common to find different work norms in contiguous assembly lines, because each might have faced a different set of problems and devised different counter - measures to tackle it. Design of the coordinating process that essentially imposes the discipline that is required in large - scale complex manufacturing systems is therefore customized to variations in man - machine context of the site of action. It evolves through numerous points of negotiation throughout the organization. It implies then that the higher levels of the hierarchy do not exercise the power of the fiat in setting work rules, for such work rules are no longer a standard set across the whole organization. It might be interesting to go through the basic Toyota philosophy that underlines its system designing practices. The notion of the ideal production system in Toyota embraces the following -‘the ability to deliver just - in - time (or on demand) a customer order in the exact specification demanded, in a batch size of one (and hence an infinite proliferation of variants, models and specifications), defect - free, without wastage of material, labour, energy or motion in a safe and (physically and emotionally) fulfilling production environment’. It did not embrace the concept of a standardized product that can be cheap by giving up variations. Preserving consumption variety was seen, in fact, as one mode of serving society. It is interesting to note that the articulation of the Toyota philosophy was made around roughly the same time that the Fordist system was establishing itself in the US automotive industry. What can be best defended as the asset which Toyota model of production leverages to give the vast range of models in a defect - free fashion?
 ...
MCQ-> The teaching and transmission of North Indian classical music is, and long has been, achieved by largely oral means. The raga and its structure, the often breathtaking intricacies of talc, or rhythm, and the incarnation of raga and tala as bandish or composition, are passed thus, between guru and shishya by word of mouth and direct demonstration, with no printed sheet of notated music, as it were, acting as a go-between. Saussure’s conception of language as a communication between addresser and addressee is given, in this model, a further instance, and a new, exotic complexity and glamour.These days, especially with the middle class having entered the domain of classical music and playing not a small part ensuring the continuation of this ancient tradition, the tape recorder serves as a handy technological slave and preserves, from oblivion, the vanishing, elusive moment of oral transmission. Hoary gurus, too, have seen the advantage of this device, and increasingly use it as an aid to instructing their pupils; in place of the shawls and other traditional objects that used to pass from shishya to guru in the past, as a token of the regard of the former for the latter, it is not unusual, today, to see cassettes changing hands.Part of my education in North Indian classical music was conducted via this rather ugly but beneficial rectangle of plastic, which I carried with me to England when I was a undergraduate. Once cassette had stored in it various talas played upon the tabla, at various tempos, by my music teacher’s brother-in law, Hazarilalii, who was a teacher of Kathak dance, as well as a singer and a tabla player. This was a work of great patience and prescience, a one-and-a-half hour performance without my immediate point or purpose, but intended for some delayed future moment who I’d practise the talas solitarily.This repeated playing our of the rhythmic cycles on the tabla was inflected by the noises-an hate auto driver blowing a horn; the sound bf overbearing pigeons that were such a nuisance on the banister; even the cry of a kulfi seller in summer —entering from the balcony of the third foot flat we occupied in those days, in a lane in a Bombay suburb, before we left the city for good. These sounds, in turn, would invade, hesitantly, the ebb and flow of silence inside the artificially heated room, in a borough of West London, in which I used to live as an undergraduate. There, in the trapped dust, silence and heat, the theka of the tabla, qualified by the imminent but intermittent presence of the Bombay subrub, would come to life again. A few years later, the tabla and, in the background, the pigeons and the itinerant kulfi seller, would inhabit a small graduate room in Oxford.cThe tape recorder, though, remains an extension of the oral transmission of music, rather than a replacement of it. And the oral transmission of North Indian classical music remains, almost uniquely, testament to the fact that the human brain can absorb, remember and reproduces structures of great complexity and sophistication without the help of the hieroglyph or written mark or a system of notation. I remember my surprise on discovering the Hazarilalji- who had mastered Kathak dance, tala and North Indian classical music, and who used to narrate to me, occasionally, compositions meant for dance that were grant and intricate in their verbal prosody, architecture and rhythmic complexity- was near illustrate and had barely learnt to write his name in large and clumsy letters.Of course, attempts have been made, throughout the 20th century, to formally codify and even notate this music, and institutions set up and degrees created, specifically to educate students in this “scientific” and codified manner. Paradoxically, however, this style of teaching has produced no noteworthy student or performer; the most creative musicians still emerge from the guru-shishya relationship, their understanding of music developed by oral communication.The fact that North Indian classical music emanates from, and has evolved through, oral culture, means that this music has a significantly different aesthetic, aw that this aesthetic has a different politics, from that of Western classical music) A piece of music in the Western tradition, at least in its most characteristic and popular conception, originates in its composer, and the connection between the two, between composer and the piece of music, is relatively unambiguous precisely because the composer writes down, in notation, his composition, as a poet might write down and publish his poem. However far the printed sheet of notated music might travel thus from the composer, it still remains his property; and the notion of property remains at the heart of the Western conception of “genius”, which derives from the Latin gignere or ‘to beget’.The genius in Western classical music is, then, the originator, begetter and owner of his work the printed, notated sheet testifying to his authority over his product and his power, not only of expression or imagination, but of origination. The conductor is a custodian and guardian of this property. IS it an accident that Mandelstam, in his notebooks, compares — celebratorily—the conductor’s baton to a policeman’s, saying all the music of the orchestra lies mute within it, waiting for its first movement to release it into the auditorium?The raga — transmitted through oral means — is, in a sense, no one’s property; it is not easy to pin down its source, or to know exactly where its provenance or origin lies. Unlike the Western classical tradition, where the composer begets his piece, notates it and stamps it with his ownership and remains, in effect, larger than, or the father of, his work, in the North India classical tradition, the raga — unconfined to a single incarnation, composer or performer — remains necessarily greater than the artiste who invokes it.This leads to a very different politics of interpretation and valuation, to an aesthetic that privileges the evanescent moment of performance and invocation over the controlling authority of genius and the permanent record. It is a tradition, thus, that would appear to value the performer, as medium, more highly than the composer who presumes to originate what, effectively, cannot be originated in a single person — because the raga is the inheritance of a culture.The author’s contention that the notion of property lies at the heart of the Western conception of genius is best indicated by which one of the following?
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words are printed in bold to help you to locate them while answering some of the questions.A large majority of the poor in India are outside the formal banking system. The policy of financial inclusion sets out to remedy this by making available a basic banking ‘no frills’ account either with nil or very minimum balances as well as charges that would make such accounts accessible to vast sections of the population. However, the mere opening of a bank account in the name of every household or adult person may not be enough, unless these accounts and financial services offered to them are used by the account holders. At present, commercial banks do not find it viable to provide services to the poor especially in the rural areas because of huge transaction costs, low volumes of savings in the accounts, lack of information on the account holder, etc. For the poor. interacting with the banks with their paper work, economic costs of going to the bank and the need for flexibility in their accounts, make them turn to other informal channels or other institutions. Thus, there are constraints on both the supply and the demand side.Till now, banks were looking at these accounts from a purely credit perspective. Instead, they should look at this from the point of view of meeting the huge need of the poor for savings. Poor households want to save and, contrary to the common perception, do have the funds to save, but lack control. Informal mutual saving systems like the Rotating Savings and Credit Associations (ROSCAs), widespread in Africa, and ‘thrift and credit groups’ in India demonstrate that poor households save. For the poor household, which lack access to the formal insurance system and the credit system, savings provide a safety net and help them tide over crises. Savings can also keep them away from the clutches of moneylenders, make formal institutions more favourable to lending to them, encourage investment and make them shift to more productive activities, as they may invest in slightly more risky activities which have an overall higher rate of return.Research shows the efficacy of informal institutions in increasing the savings of the small account holders. An MFI in the Philippines, which had existing account holders, was studied. They offered new products with ‘commitment features’. One type had withdrawal restrictions in the sense that it required individuals to restrict their right to withdraw any funds from their own accounts until they reached a self-specified and documented goal. The other type was deposit options. Clients could purchase a locked box for a small fee. The key was with the bank and the client has to bring the box to the bank to make the deposit. He could not dip into the savings even if he wanted to. These accounts did not pay extra money and were illiquid. Surprisingly, these products were popular even though these had restrictions. Results showed that those who opted for these accounts with restrictions had substantially greater savings rates than those who did not. The policy of financial inclusion can be a success if financial inclusion focuses onboth saving needs and credit needs, having a diversified product portfolio for the poor but recognising that self-control problems need to be addressed by having commitment devices. The products with commitment features should be optional. Furthermore transaction costs for the poor could be cut down, by making innovative use of technology available and offering mobile vans with ATM and deposit collection features which could visit villages periodically.What is the aim of the financial inclusion policy ?
 ...
MCQ->Consider the following library functions
  1. EXP (i.e., ex)
  2. ARCTAN (i.e. tan-1 x)
  3. SQRT (i.e., x)
  4. AES (i.e. |x|)

Which of the above are allowed in Pascal?...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions