1. Nick name of the oldest known fossil skeleton of a human ancestor—a female Ardipithecus ramidus specimen which has been found recently?

Answer: "Ardi"

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Nick name of the oldest known fossil skeleton of a human ancestor—a female Ardipithecus ramidus specimen which has been found recently?....
QA->Number of vertebrae in human skeleton:....
QA->A British-German scientist’s team recently has identified the old ancestor of the world’s most infamous predator, Tyrannosaurus rex which is a dinosaur. Name of that 165-million-year-old dinosaur lived during the middle Jurassic Period?....
QA->Remnants of India’s one of the oldest ports has recently been found in which state?....
QA->Specimen signature of a gazetted officer is to be forwarded to the Accountant General in case:....
MCQ-> Read the following passages carefully and answer the questions given at the end of each passage.PASSAGE 3Typically women participate in the labour force at a very high rate in poor rural countries. The participation rate then falls as countries industrialise and move into the middle income class. Finally, if the country grows richer still, more families have the resources for higher education for women and from there they often enter the labour force in large numbers. Usually, economic growth goes hand in hand with emancipation of women. Among rich countries according to a 2015 study, female labour force participation ranges from nearly 80 percent in Switzerland to 70 percent in Germany and less than 60 Percent in the United States and Japan. Only 68 Percent of Canadian omen participated in the workforce in 1990; two decades later that increased to 74 Percent largely due to reforms including tax cuts for second earners and new childcare services. In Netherlands the female labour participation rate doubled since 1980 to 74 Percent as a result of expanded parental leave policies and the spread of flexible, part time working arrangements. In a 2014 survey of 143 emerging countries, the World Bank found that 90 Percent have at least one law that limits the economic opportunities available to women. These laws include bans or limitations on women owning property, opening a bank account, signing a contract, entering a courtroom, travelling alone, driving or controlling family finances. Such restrictions are particularly prevalent in the Middle East and South Asia with the world’s lowest female labour force participation, 26 and 35 percent respectively. According to date available with the International Labour Organisation (ILO), between 2004 and 2011, when the Indian economy grew at a healthy average of about 7 percent, there was a decline in female participation in the country’s labour force from over 35 percent to 25 percent. India also posted the lowest rate of female participation in the workforce among BRIC countries. India’s performance in female workforce participation stood at 27 percent, significantly behind China (64 percent), Brazil (59 percent), Russian Federation (57 percent), and South Africa (45 percent). The number of working women in India had climbed between 2000 and 2005, increasing from 34 percent to 37 percent, but since then the rate of women in the workforce has to fallen to 27 percent as of 2014, said the report citing data from the World Bank. The gap between male and female workforce participation in urban areas in 2011 stood at 40 percent, compared to rural areas where the gap was about 30 percent. However, in certain sectors like financial services, Indian women lead the charge. While only one in 10 Indian companies are led by women, more than half of them are in the financial sector. Today, women head both the top public and private banks in India. Another example is India’s aviation sector, 11.7 percent of India’s 5,100 pilots are women, versus 3 percent worldwide. But these successes only represent a small of women in the country. India does poorly in comparison to its neighbours despite a more robust economic growth. In comparison to India, women in Bangladesh have increased their participation in the labour market, which is due to the growth of the ready- made garment sector and a push to rural female employment. In 2015, women comprised of 43 percent of the labour force in Bangladesh. The rate has also increased in Pakistan, albeit from a very low starting point, while participation has remained relatively stable in Sri Lanka. Myanmar with 79 percent and Malaysia with 49 percent are also way ahead of India. Lack of access to higher education, fewer job opportunities, the lack of flexibility in working conditions, as well as domestic duties are cited as factors behind the low rates. Marriage significantly reduced the probability of women working by about 8 percent in rural areas and more than twice as much in urban areas, said an Assocham report. ILO attributes this to three factors: increasing educational enrolment, improvement in earning of male workers that discourage women’s economic participation, and lack of employment opportunities at certain levels of skills and qualifications discouraging women to seek work. The hurdles to working women often involve a combination of written laws and cultural norms. Cultures don’t change overnight but laws can. The IMF says that even a small step such as countries granting women the right to open a bank account can lead to substantial increase in female labour force participation over the next seven years. According to the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), even a 10 percent increase in women participating in the workforce can boost gross domestic product (GDP) by 0.3 percent. The OECD recently estimated that eliminating the gender gap would lead to an overall increase in GDP of 12 percent in its member nations between 2015 and 2030. The GDP gains would peak close to 20 percent in both Japan and South Korea and more than 20 percent in Italy. A similar analysis by Booz and Company showed that closing gender gap in emerging countries could yield even larger gains in GDP by 2020, ranging from a 34 percent gain in Egypt to 27 percent in India and 9 percent in Brazil. According to the above passage, though there are many reasons for low female labour force participation, the most important focus of the passage is on
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.The difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and palaeontologists. To varying degrees each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behaviour. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made2 1 inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 Could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans. How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance on human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance.The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispaniola, New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents. Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulae, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities.Why do islands with considerable degree of isolation provide valuable insights into human history?
 ...
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ...
MCQ-> Social life is an outflow and meeting of personality, which means that its end is the meeting of character, temperament, and sensibility, in which our thoughts and feelings, and sense perceptions are brought into play at their lightest and yet keenest.This aspect, to my thinking, is realized as much in large parties composed of casual acquaintances or even strangers, as in intimate meetings of old friends. I am not one of those superior persons who hold cocktail parties in contempt, looking upon them as barren or at best as very tryingly kaleidoscopic places for gathering, because of the strangers one has to meet in them; which is no argument, for even our most intimate friends must at one time have been strangers to us. These large gatherings will be only what we make of them if not anything better, they can be as good places to collect new friends from as the slavemarkets of Istanbul were for beautiful slaves or New Market for race horses.But they do offer more immediate enjoyment. For one thing, in them one can see the external expression of social life in appearance and behaviour at its widest and most varied where one can admire beauty of body or air, hear voices remarkable either for sweetness of refinement, look on elegance of clothes or deportment. What is more, these parties are schools for training in sociability, for in them we have to treat strangers as friends. So, in them we see social sympathy in widest commonalty spread, or at least should. We show an atrophy of the natural human instinct of getting pleasure and happiness out of other human beings if we cannot treat strangers as friends for the moment. And I would go further and paraphrase Pater to say that not to be able to discriminate every moment some passionate attitude in those about us, even when we meet them casually, is on this short day of frost and sun which out life is, to sleep before evening.So, it will be seen that my conception of social life is modest, for it makes no demands on what we have, though it does make some on what we are. Interest, wonder, sympathy, and love, the first two leading to the last two, are the psychological prerequisites for social life; and the need for the first two must not be underrated. We cannot make the most even of our intimate social life unless we are able to make strangers of our oldest friends everyday by discovering unknown areas in their personality, and transform them into new friends. In sum, social life is a function of vitality.It is tragic, however, to observe that it is these very natural springs of social life which are drying up among us. It is becoming more and more difficult to come across fellow-feeling for human beings as such in our society and in all its strata. In the poor middle class, in the course of all my life. I have hardly seen any social life properly so-called. Not only has the grinding routine of making a living killed all desire for it in them, it has also generated a standing mood of peevish hostility to other human beings. Increasing economic distress in recent years has infinitely worsened this state of affairs, and has also brought a sinister addition class hatred. This has become the greatest collective emotional enjoyment of the poor middle class, and indeed they feel most social when they form a pack, and snarl or howl at people who are better off than they.Their most innocent exhibition of sociability is seen when they spill out from their intolerable homes into the streets and bazaars. I was astonished to see the milling crowds in the poor suburbs of Calcutta. But even there a group of flippant young loafers would put on a conspiratorial look if they saw a man in good clothes passing by them either on foot or in a car. I had borrowed a car from a relative to visit a friend in one of these suburbs, and he became very anxious when I had not returned before dusk. Acid and bombs, he said, were thrown at card almost every evening in that area. I was amazed. But I also know as a fact that my brother was blackmailed to pay five rupees on a trumped up charge when passing in a car through one such locality.The situation is differently inhuman, but not a whit more human, among the well-to-do. Kindliness for fellow human beings has been smothered in them, taken as a class, by the arrogance of worldly position, which among the Bengalis who show this snobbery is often only a third-class position.The word ‘they’ in the first sentence of the third paragraph refers to
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions