1. How many address lines are needed to address each machine location in 2048X4 memory chip?

Answer: 11

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->How many address lines are needed to address each machine location in 2048X4 memory chip?....
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
QA->A computer has 8 MB in main memory, 128 KB cache with block size of 4KB. If direct mapping scheme is used, how many different main memory blocks can map into a given physical cache block?....
QA->The mechanism that bring a page into memory only when it is needed is called ?....
QA->Process of mapping a network interface IP address to its hardware address:....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ...
MCQ-> Based on the information answer the questions which follow.A consultant to Department of Commerce. Government of Bianca has suggested 30 products which have high export potential. Dora an entrepreneur and prospective exporter notices that these products can be grouped in three ways- Machine made goods, Handmade goods and Intermediate goods. Among these 30 products some products are both machine made and intermediate goods but not handmade goods. Few products have a combination of handmade and machine made goods but not intermediate goods. Some products are handmade and intermediate goods but not machine made goods. Further it is seen that handmade-machine made goods are I less than machine made-intermediate goods. Similarly the total number of handmade-intermediate goods is I less than machine made-intermediate goods. There are just 4 products common across all product groups i.e. machine made-handmade- intermediate goods. Apart from this the number of only handmade goods is same as only machine made goods but less than only intermediate goods. Each product group/combination has at least one product. Dora prefers to export machine made goods and avoid hand made goods. She finds out that only handmade goods are twice the machine made-intermediate goods and the number of only intermediate goods is an even number. Whereas her close friend Sara prefers to export intermediate goods followed by only handmade goods.Sara and Dora prefer to export as many common products as possible in order to understand the regulatory conditions. Keeping their preferences intact, what is the maximum number of common products which can be exported by both of them?
 ...
MCQ->Read the following statements about address space in microprocessors An address space is a set of all possible addresses which can be generated by a microprocessor.Each address in the address space allows a designer to provide at least one memory or I/O location in the system.Two types of address spaces are memory and I/O address space.Some micro processors have only one type of address space. Which of the above are correct?...
MCQ-> Read the following passage carefully and answer the questions given below it. Before my many years’ service in a restaurant, I attended a top science university. The year was 2003 and I was finishing the project that would win me my professorship. My fortysecond birthday had made a lonely visit the week before, and I was once again by myself in the flat. Like countless other mornings, I ordered a bagel from the toaster. ‘Yes, sir!’ it replied with robotic relish, and I began the day’s work on the project. It was a magnificent machine, the thing I was makingcapable of transferring the minds of any two beings into each other’s bodies. As the toaster began serving my bagel on to a plate, I realised the project was in fact ready for testing. I retrieved the duck and the catwhich I had bought for this purpose from their containers, and set about calibrating the machine in their direction. Once ready, I leant against the table, holding the bagel I was too excited to eat, and initiated the transfer sequence. As expected, the machine whirred and hummed into action, my nerves tingling at its synthetic sounds. The machine hushed, extraction and injection nozzles poised, scrutinizing its targets. The cat, though, was suddenly gripped by terrible alarm. The brute leapt into the air, flinging itself onto the machine. I watched in horror as the nozzles swung towards me; and, with a terrible, psychedelic whirl of colours, felt my mind wrenched from its sockets. When I awoke, moments later, I noticed first that I was two feet shorter. Then, I realised the lack of my limbs, and finally it occurred to me that I was a toaster. I saw immediately the solution to the situation – the machine could easily reverse the transfer but was then struck by my utter inability to carry this out. After some consideration, using what I supposed must be the toaster’s onboard computer; I devised a strategy for rescue. I began to familiarise myself with my new body : the grill, the bread bin, the speaker and the spring mechanism. Through the device’s rudimentary eye with which it served its creations – I could see the internal telephone on the wall. Aiming carefully, I began propelling slices of bread at it. The toaster was fed by a large stock of the stuff, yet as more and more bounced lamely off the phone, I began to fear its exhaustion. Toasting the bread before launch proved a wiser tactic. A slice of crusty wheat knocked the receiver off its cradle, and the immovable voice of the reception clerk answered. Resisting the urge to exclaim my unlikely predicament, I called from the table : “I’m having a bit of trouble up here, Room 91. Could you lend a hand ?” “Certainly, sir, there’s a burst water pipe on the floor above, I suppose I’ll kill two birds with one stone and sort you out on the way.” The clerk arrived promptly, and after a detailed and horrifying explanation, finally agreed to press the button on the machine and bring me back to my original state.Why did the author believe that he would earn professorship ?
 ...
MCQ->A microprocessor with a 16 bit address bus is used in a linear memory selection configuration. Address bus lines are directly uses as chip selects of memory chips with 4 memory chips the maximum addressable memory space is...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions