1. If too large current passes through the diode





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A 1 km long train passes through a tunnel of 1 km length at a speed of 1 km per minute. How much time will it take to pass through it completely?....
QA->Who said "Three o'clock is always too late or too early for anything you want to do’ ?....
QA->A large shop selling large variety of goods ?....
QA->THROUGH HOW MANY STATES INDIAN TANDARD MERIDIAN PASSES....
QA->WHICH IS THE IMPORTANT CIRCLE OF LATITUDE THAT PASSES THROUGH INDIA....
MCQ-> Read the passage given below and answer the questions that follow:-Brazil is a top exporter of every commodity that has seen dizzying price surges - iron ore, soybeans, sugar - producing a golden age for economic growth Foreign money-flows into Brazilian stocks and bonds climbed heavenward, up more than tenfold, from $5 billion a year in early 2007 to more than $50 billion in the twelve months through March 2011.The flood of foreign money buying up Brazilian assets has made the currency one of the most expensive in the world, and Brazil one of the most costly, overhyped economies. Almost every major emerging- market currency has strengthened against the dollar over the last decade, but the Brazilian Real is on a path alone, way above the pack, having doubled in value against the dollar.Economists have all kinds of fancy ways to measure the real value of a currency, but when a country is pricing itself this far out of the competition, you can feel it on the ground. In early 2011 the major Rio paper, 0 Globo, ran a story on prices showing that croissants are more expensive than they are in Paris, haircuts cost more than they do in London, bike rentals are more expensive than in Amsterdam, and movie tickets sell for higher prices than in Madrid. A rule of the road: if the local prices in an emerging market country feel expensive even to a visitor from a rich nation, that country is probably not a breakout nation.There is no better example of how absurd it is to lump all the big emerging markets together than the frequent pairing of Brazil and China. Those who make this comparison are referring only to the fact that they are the biggest players in their home regions, not to the way the economies actually run. Brazil is the world‘s leading exporter of many raw materials, and China is the leading importer; that makes them major trade partners - China surpassed the United States as Brazil's leading trade partner in 2009 f but it also makes them opposites in almost every important economic respect: Brazil is the un-China, with interest rates that are too high, and a currency that is too expensive. It spends too little on roads and too much on welfare, and as a result has a very un-China-like growth record.It may not be entirely fair to compare economic growth in Brazil with that of its Asian counterparts, because Brazil has a per capita income of $12,000, more than two times China's and nearly ten times India's. But even taking into account the fact that it is harder for rich nations to grow quickly, Brazil's growth has been disappointing. Since the early 19805 the Brazilian growth rate has oscillated around an average of 2.5 percent, spiking only in concert with increased prices for Brazil's key commodity exports. While China has been criticized for pursuing "growth at any cost," Brazil has sought to secure "stability at any cost." Brazil's caution stems from its history of financial crises, in which overspending produced debt, humiliating defaults, and embarrassing devaluations, culminating in a disaster that is still recent enough to be fresh in every Brazilian adult's memory: the hyperinflation that started in the early 19805 and peaked in 1994, at the vertiginous annual rate of 2,100 percent.Wages were pegged to inflation but were increased at varying intervals in different industries, 50 workers never really knew whether they were making good money or not. As soon as they were paid, they literally ran to the store with cash to buy food, and they could afford little else, causing non-essential industries to start to die. Hyperinflation finally came under control in l995, but it left a problem of regular behind. Brazil has battled inflation ever since by maintaining one of the highest interest rates in the emerging world. Those high rates have attracted a surge of foreign money, which is partly why the Brazilian Real is so expensive relative to comparable currencies.There is a growing recognition that China faces serious "imbalances" that could derail its long economic boom. Obsessed until recently with high growth, China has been pushing too hard to keep its currency too cheap (to help its export industries compete), encouraging excessively high savings and keeping interest rates rock bottom to fund heavy spending on roads and ports. China is only now beginning to consider a shift in spending priorities to create social programs that protect its people from the vicissitudes of old age and unemployment.Brazil’s economy is just as badly out of balance, though in opposite ways. While China has introduced reforms relentlessly for three decades, opening itself up to the world even at the risk of domestic instability, Brazil has pushed reforms only in the most dire circumstances, for example, privatizing state companies when the government budget is near collapse. Fearful of foreign shocks, Brazil is still one of the most closed economies in the emerging world - total imports and exports account for only 15 percent of GDP - despite its status as the world's leading exporter of sugar, orange juice, coffee, poultry, and beef.To pay for its big government, Brazil has jacked up taxes and now has a tax burden that equals 38 percent of GDP, the highest in the emerging world, and very similar to the tax burden in developed European welfare states, such as Norway and France. This heavy load of personal and corporate tax on a relatively poor country means that businesses don’t have the money to invest in new technology or training, which in turn means that industry is not getting more efficient. Between 1986 and 2008 Brazil’s productivity grew at an annual rate of :about 0.2 percent, compared to 4 percent in China. Over the same period, productivity grew in India at close to 3 percent and in South Korea and Thailand at close to 2 percent. According to the passage, the major concern facing the Brazil economy is:
 ....
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.Human Biology does nothing to structure human society. Age may enfeeble us all, but cultures vary considerably in the prestige and power they accord to the elderly. Giving birth is a necessary condition for being a mother, but it is not sufficient. We expect mothers to behave in maternal ways and to display appropriately maternal sentiments. We prescribe a clutch of norms or rules that govern the role of a mother. That the social role is independent of the biological base can be demonstrated by going back three sentences. Giving birth is certainly not sufficient to be a mother but, as adoption and fostering show, it is not even necessary! The fine detail of what is expected of a mother or a father or a dutiful son differs from culture to culture, but everywhere behaviour is coordinated by the reciprocal nature of roles. Husbands and wives, parents and children, employers and employees, waiters and customers, teachers and pupils, warlords and followers; each makes sense only in its relation to the other. The term ‘role’ is an appropriate one, because the metaphor of an actor in a play neatly expresses the rule-governed nature or scripted nature of much of social life and the sense that society is a joint production. Social life occurs only because people play their parts (and that is as true for war and conflicts as for peace and love) and those parts make sense only in the context of the overall show. The drama metaphor also reminds us of the artistic licence available to the players. We can play a part straight or, as the following from J.P. Sartre conveys, we can ham it up.Let us consider this waiter in the cafe. His movement is quick and forward, a little too precise, a little too rapid. He comes towards the patrons with a step a little too quick. He bends forward a little too eagerly; his voice, his eyes express an interest a little too solicitous for the order of the customer. Finally there he returns, trying to imitate in his walk the inflexible stiffness of some kind of automaton while carrying his tray with the recklessness of a tightrope-walker....All his behaviour seems to us a game....But what is he playing? We need not watch long before we can explain it: he is playing at being a waiter in a cafe. The American sociologist Erving Goffman built an influential body of social analysis on elaborations of the metaphor of social life as drama. Perhaps his most telling point was that it is only through acting out a part that we express character. It is not enough to be evil or virtuous; we have to be seen to be evil or virtuous. There is distinction between the roles we play and some underlying self. Here we might note that some roles are more absorbing than others. We would not be surprised by the waitress who plays the part in such a way as to signal to us that she is much more than her occupation. We would be surprised and offended by the father who played his part ‘tongue in cheek’. Some roles are broader and more far-reaching than others. Describing someone as a clergyman or faith healer would say far more about that person than describing someone as a bus driver.What is the thematic highlight of this passage?
 ....
MCQ-> Read the following passage based on an Interview to answer the given questions based on it. Certain words are printed in bold to help you locate them while answering some of the questions.A spate of farmer suicides linked to harassment by recovery agents employed by micro finance institutions (MFLs) in Andhra Pradesh spurned the state government to bring in regulation to protect consumer interests. But, while the Bill has brought into sharp focus the need for consumer protection, it tries to micro-manage MFI operations and in the process it could scuttle some of the crucial bene ts that MFIs bring to farmers, says the author of Micro nance India, State Of The Sec-for Report 2010. In an interview he points out that prudent regulation can ensure the original goal of the MFIs - social uplift of the poor. Do you feel the AP Bill to regulate Mils is well thought out? Does it ensure fairness to the borrowers and the long-term health of the sector? The AP Bill has brought into sharp focus the need for customer protection in four critical areas. First is pricing. Second is lender's liability whether the lender can give too much loan without assessing the customer's ability to pay. Third is the structure of loan repayment - whether you can ask money on a weekly basis from people who don't produce weekly incomes. Fourth is the practices that attend to how you deal with defaults. But the Act should have looked at the positive bene ts that institutions could bring in, and where they need to be regulated in the interests of the customers. It should have brought only those features in. Say, you want the recovery practices to be consistent with what the customers can really manage. If the customer is aggrieved and complains that somebody is harassing him, then those complaints should be investigated by the District Rural Development Authority. Instead what the Bill says is that MF1s cannot go to the customer's premises to ask for recovery and that all transactions will be done in the Panchayat of ce. With great dif culty, MFIs brought services to the door of people. It is such a relief for the customers not to be spending time out going to banks or Panchayat of ces, which could be 10 km away in some cases. A facility which has brought some relief to people is being shut. Moreover, you are practically telling the MFI where it should do business and how it should do it. Social responsibilities were inbuilt when the MIrls were rst conceived. If kills go for profit with loose regulations, how are they different from moneylenders? Even among moneylenders there are very good people who take care of the customer's circumstance, and there are really bad ones. A large number of the MF1s are good and there are some who are coercive because of the kind of prices and processes they have adopted. But Moneylenders never got this organised. They did not have such a large footprint. An MFI brought in organisation, it mobilized the equity, it brought in commercial funding. It invested in systems. It appointed a large number of people. But some of them exacted a much higher price than they should have. They wanted to break even very fast and greed did take over in some cases.Are the for-profit 'Ms the only ones harassing people for recoveries? Some not-for-profit out ts have also adopted the same kind of recovery methods. That may be because you have to show that you are very ef cient in your recovery methods and that your portfolio is of a very high quality if you want to get commercial funding from a bank. In fact, among for-profits there are many who have sensible recovery practices. Some have fortnightly recovery, some have monthly recovery. So we have differing practices. We just describe a few dominant ones and assume every for-profit MFI operates like that. How can you introduce regulations to ensure social upliftment in a sector that is moving towards for-profit models? I am not really concerned whether someone wants to make a profit or not The bottom-line for me is customer protection. The rst area is fair practices. Are you telling your customers how the loan is structured ? Are you being transparent about your performance? There should also be a lender's liability attached to what you do. Suppose you lend excessively to a customer without assessing their ability to service the loan, you have to take the hit. Then there's the question of limiting returns. You can say that an MFI cannot have a return on assets more than X, a return on equity of more than Y. Then suppose there is a privately promoted MFI, there should be a regulation to ensure the MFI cannot access equity markets till a certain amount of time. MFIs went to markets perhaps because of the need to grow too big too fast. The government thought they were making profit off the poor, and that's an indirect reason why they decided to clamp down on MF1s. If you say an MFI won't go to capital market, then it will keep political compulsions under rein.Which of the following best explains "structure of loan repayment" in this context of the rst question asked to the author ?....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions