1. Portrait and Landscape are:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A Michael Jackson portrait has sold for $812,000 (£507,500) at an auction in Los Angeles. The artist of that portrait is?....
QA->Many modern architects insists on……………materials native to the region that will blend into the surrounding landscape.....
QA->Who is the author of the book "Jack and Jackle-Portrait of an American Marriage" ?....
QA->Name the only tribal leader whose portrait is present in the Central Hall of the Indian Parliament?....
QA->The word "selfie" has recently made its way into the dictionary, but the world"s first known self-portrait was taken 175 years ago by an American photographer. Name that American Photographer?....
MCQ->The passage given below is followed by four summaries. Choose the option that best captures the author’s position.The conceptualization of landscape as a geometric object first occurred in Europe and is historically related to the European conceptualization of the organism, particularly the human body, as a geometric object with parts having a rational, three-dimensional organization and integration. The European idea of landscape appeared before the science of landscape emerged, and it is no coincidence that Renaissance artists such as Leonardo da Vinci, who studied the structure of the human body, also facilitated an understanding of the structure of landscape. Landscape which had been a subordinate background to religious or historical narratives, became an independent genre or subject of art by the end of sixteenth century or the beginning of the seventeenth century. ....
MCQ-> To summarize the Classic Maya collapse, we can tentatively identify five strands. I acknowledge, however, that Maya archaeologists still disagree vigorously among themselves in part, because the different strands evidently varied in importance among different parts of the Maya realm; because detailed archaeological studies are available for only some Maya sites; and because it remains puzzling why most of the Maya heartland remained nearly empty of population and failed to recover after the collapse and after re-growth of forests. With those caveats, it appears to me that one strand consisted of population growth outstripping available resources: a dilemma similar to the one foreseen by Thomas Malthus in 1798 and being played out today in Rwanda, Haiti and elsewhere. As the archaeologist David Webster succinctly puts it, “Too many farmers grew too many crops on too much of landscape.” Compounding that mismatch between population and resources was the second strand: the effects of deforestation and hillside erosion, which caused a decrease in the amount of useable farmland at a time when more rather than less farmland was needed, and possibly exacerbated by an anthropogenic drought resulting from deforestation, by soil nutrient depletion and other soil problems, and by the struggle to prevent bracken ferns from overrunning the fields. The third strand consisted of increased fighting, as more and more people fought over fewer resources. Maya warfare, already endemic, peaked just before the collapse. That is not surprising when one reflects that at least five million people, perhaps many more, were crammed into an area smaller than the US state of Colorado (104,000 square miles). That warfare would have decreased further the amount of land available for agriculture, by creating no-man’s lands between principalities where it was now unsafe to farm. Bringing matters to a head was the strand of climate change. The drought at the time of the Classic collapse was not the first drought that the Maya had lived through, but it was the most severe. At the time of previous droughts, there were still uninhabited parts of the Maya landscape, and people at a site affected by drought could save themselves by moving to another site. However, by the time of the Classic collapse the landscape was now full, there was no useful unoccupied land in the vicinity on which to begin anew, and the whole population could not be accommodated in the few areas that continued to have reliable water supplies. As our fifth strand, we have to wonder why the kings and nobles failed to recognize and solve these seemingly obvious problems undermining their society. Their attention was evidently focused on their short-term concerns of enriching themselves, waging wars, erecting monuments, competing with each other, and extracting enough food from the peasants to support all those activities. Like most leaders throughout human history, the Maya kings and nobles did not heed long-term problems, insofar as they perceived them. Finally, while we still have some other past societies to consider before we switch our attention to the modern world, we must already he struck by some parallels between the Maya and the past societies. As on Mangareva, the Maya environmental and population problems led to increasing warfare and civil strife. Similarly, on Easter Island and at Chaco Canyon, the Maya peak population numbers were followed swiftly by political and social collapse. Paralleling the eventual extension of agriculture from Easter Island’s coastal lowlands to its uplands, and from the Mimbres floodplain to the hills, Copan’s inhabitants alsoexpanded from the floodplain to the more fragile hill slopes, leaving them with a larger population to feed when the agricultural boom in the hills went bust. Like Easter Island chiefs erecting ever larger statues, eventually crowned by pukao, and like Anasazi elite treating themselves to necklaces of 2,000 turquoise beads, Maya kings sought to outdo each other with more and more impressive temples, covered with thicker and thicker plaster — reminiscent in turn of the extravagant conspicuous consumption by modern American CEOs. The passivity of Easter chiefs and Maya kings in the face of the real big threats to their societies completes our list of disquieting parallels.According to the passage, which of the following best represents the factor that has been cited by the author in the context of Rwanda and Haiti?
 ....
MCQ-> The narrative of Dersu Uzala is divided into two major sections, set in 1902, and 1907, that deal with separate expeditions which Arseniev conducts into the Ussuri region. In addition, a third time frame forms a prologue to the film. Each of the temporal frames has a different focus, and by shifting them Kurosawa is able to describe the encroachment of settlements upon the wilderness and the consequent erosion of Dersu’s way of life. As the film opens, that erosion has already begun. The first image is a long shot of a huge forest, the trees piled upon one another by the effects of the telephoto lens so that the landscape becomes an abstraction and appears like a huge curtain of green. A title informs us that the year is 1910. This is as late into the century as Kurosawa will go. After this prologue, the events of the film will transpire even farther back in time and will be presented as Arseniev’s recollections. The character of Dersu Uzala is the heart of the film, his life the example that Kurosawa wishes to affirm. Yet the formal organization of the film works to contain, to close, to circumscribe that life by erecting a series of obstacles around it. The film itself is circular, opening and closing by Dersu’s grave, thus sealing off the character from the modern world to which Kurosawa once so desperately wanted to speak. The multiple time frames also work to maintain a separation between Dersu and the contemporary world. We must go back father even than 1910 to discover who he was. But this narrative structure has yet another implication. It safeguards Dersu’s example, inoculates it from contamination with history, and protects it from contact with the industrialised, urban world. Time is organised by the narrative into a series of barriers, which enclose Dersu in a kind of vacuum chamber, protecting him from the social and historical dialectics that destroyed the other Kurosawa heroes. Within the film, Dersu does die, but the narrative structure attempts to immortalise him and his example, as Dersu passes from history into myth. We see all this at work in the enormously evocative prologue. The camera tilts down to reveal felled trees littering the landscape and an abundance of construction. Roads and houses outline the settlement that isbeing built. Kurosawa cuts to a medium shot of Arseniev standing in the midst of the clearing, lookinguncomfortable and disoriented. A man passing in a wagon asks him what he is doing, and the explorersays he is looking for a grave. The driver replies that no one has died here, the settlement is too recent. These words enunciate the temporal rupture that the film studies. It is the beginning of things (industrial society) and the end of things (the forest), the commencement of one world so young that no one has had time yet to die and the eclipse of another, in which Dersu had died. It is his grave for which the explorer searches. His passing symbolises the new order, the development that now surrounds Arseniev. The explorer says he buried his friend three years ago next to huge cedar and fir trees, but now they are all gone. The man on the wagon replies they were probably chopped down when the settlement was built, and he drives off. Arseniev walks to a barren, treeless spot next to a pile of bricks. As he moves, the camera tracks and pans to follow, revealing a line of freshly built houses and a woman hanging her laundry to dry. A distant train whistle is heard, and the sounds of construction in the clearing vie with the cries of birds and the rustle of wind in the trees. Arseniev pauses, looks around for the grave that once was, and murmurs desolately, ‘Dersu’. The image now cuts farther into the past, to 1902, and the first section of the film commences, which describes Arseniev’s meeting with Dersu and their friendship. Kurosawa defines the world of the film initially upon a void, a missing presence. The grave is gone, brushed aside by a world rushing into modernism, and now the hunter exists only in Arseniev’s memories. The hallucinatory dreams and visions of Dodeskaden are succeeded by nostalgic, melancholy ruminations. Yet by exploring these ruminations, the film celebrates the timelessness of Dersu’s wisdom. The first section of the film has two purposes: to describe the magnificence and in human vastness of nature and to delineate the code of ethics by which Dersu lives and which permits him to survive in these conditions. When Dersu first appears, the other soldiers treat him with condescension and laughter, but Arseniev watches him closely and does not share their derisive response. Unlike them, he is capable of immediately grasping Dersu’s extraordinary qualities. In camp, Kurosawa frames Arseniev by himself, sitting on the other side of the fire from his soldiers. While they sleep or joke among themselves, he writes in his diary and Kurosawa cuts in several point-of-view shots from his perspective of trees that appear animated and sinister as the fire light dances across their gnarled, leafless outlines. This reflective dimension, this sensitivity to the spirituality of nature, distinguishes him from the others and forms the basis of his receptivity to Dersu and their friendship. It makes him a fit pupil for the hunter.How is Kurosawa able to show the erosion of Dersu’s way of life?
 ....
MCQ-> Read the following passage carefully and answer the given questions. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Virtual currencies are growing in popularity. While the collective value of virtual currencies is still a fraction of the total U.S. Dollars in circulation, the use of virtual currencies as a payment mechanism of transfer of value is gaining momentum. Additionally, the number of entities (issuers, exchangers and intermediaries, to name just a few) that engage in virtual currency transactions is increasing and these entities often need access to traditional banking services.Virtual currencies are digital representations of value that function as a medium of exchange, a unit of account and a store of value (buy now redeem later policy). In many cases, virtual currencies are “convertible” currencies; they are not legal lenders, but they have an equivalent value in real currency. Despite what seems to be a tremendous interest in virtual currencies their overall value is still extremely small relative to other payment mechanisms, such as cash, cheques and credit and debit cards. The virtual currency landscape includes many participants from the merchant that accepts the virtual currency, to the intermediary that exchanges the virtual currency on behalf of the merchant, to the exchange that actually converts the virtual currency to the real currency to the electronic wallet provider that holds the virtual currency on behalf of its owner. Accordingly, opportunities abound for community banks to provide services to entities engaged in virtual currency activities. Eventually, it is also possible that community banks may find themselves holding virtual currency on their own balance sheets.Launched in 2009, Silicon is currently the largest and most popular virtual currency. However, many other virtual currencies have emerged over the past few years, such as Litecoin, Dogecoin, Peercoin and these provide even more anonymity to its users than that provided by Bitcoin.As the virtual currency landscape is fraught with dangers, what important risks should community bankers consider?The most significant is compliance risk- a subset of legal risk. Specifically, virtual currency administrators or legal exchangers may present risks similar to other money transmitters, as well in presenting their own unique risks. Quite simply, many users of virtual currencies do so because of the perceptions that transactions conaucted using virtual currencies are anonymous. The less-than transparent nature of the transactions, :nay make it more difficult for a inancial institution to truly know and understand the activities of its customer and whether the customer’s activities are legal. Therefore, these transactions may present a higher risk for banks and require additional due diligence and monitoring.Another important risk for community banks to consider is credit risk. How should a community bank respond if a borrower wants to specifically post Bitcoin or another virtual currency as collateral for a loan? For many, virtual currencies are simply another form of cash, so it is not hard to analyse that bankers will face such a scenario at some point. In this case, caution is appropriate. Bankers should carefully weigh the pros and cons of extending any loan secured by Bitcoin or other virtual currencies (in whole or in part), or where the source of loan repayment is in some way dependent on the virtual currency. For one, the value of Bitcoin in particular has been volatile. Then, the collateral value could fluctuate widely from day-to-day. Bankers also need to think about control over the account. ‘How does the banker control access to a virtual wallet, and how can it control the borrower’s access to the virtual wallet? In the event of a loan default, the bank would need to take control of the virtual currency. This would require access to the borrower’s virtual wallet and private key. All of this suggests that the loan agreement needs to be carefully crafted and that additional steps need to be taken to ensure the bank has a perfected lift on the virtual currency.Virtual currencies bring with them, both opportunities and challenges, and they are likely here to stay. Although, it is too early to determine just how prevalent they will be in the coming years, we too expect that the virtual participants in the virtual currency ecosystem will increasingly intersect with the banking industry.Which of the following is the meaning of the phrase ‘fraught with dangers’ as mentioned in the passage?
 ....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions