1. Symmetric top molecules have





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who said ‘Climbing to the top demands strength; whether it is to the top of Mount Everest or to the top of your career’?....
QA->According to the QS/Times Higher Education rankings, which university retained the top position among the top 100 varsities of the world?....
QA->The number of molecules contained in 1 mole of gases is called?....
QA->Largest physical and chemical molecules for cell are?....
QA->A molecule of glucose on complete oxidation yields how many ATP molecules in case of aerobic respiration?....
MCQ-> The passage below is accompanied by a set of six questions. Choose the best answer to each question.Understanding where you are in the world is a basic survival skill, which is why we, like most species come hard-wired with specialised brain areas to create cognitive maps of our surroundings. Where humans are unique, though, with the possible exception of honeybees, is that we try to communicate this understanding of the world with others. We have a long history of doing this by drawing maps — the earliest versions yet discovered were scrawled on cave walls 14,000 years ago. Human cultures have been drawing them on stone tablets, papyrus, paper and now computer screens ever since.Given such a long history of human map-making, it is perhaps surprising that it is only within the last few hundred years that north has been consistently considered to be at the top. In fact, for much of human history, north almost never appeared at the top, according to Jerry Brotton, a map historian... "North was rarely put at the top for the simple fact that north is where darkness comes from," he says. "West is also very unlikely to be put at the top because west is where the sun disappears."Confusingly, early Chinese maps seem to buck this trend. But, Brotton, says, even though they did have compasses at the time, that isn't the reason that they placed north at the top. Early Chinese compasses were actually oriented to point south, which was considered to be more desirable than deepest darkest north. But in Chinese maps, the Emperor, who lived in the north of the country was always put at the top of the map, with everyone else, his loyal subjects, looking up towards him. "In Chinese culture the Emperor looks south because it's where the winds come from, it's a good direction. North is not very good but you are in a position of subjection to the emperor, so you look up to him," says Brotton.Given that each culture has a very different idea of who, or what, they should look up to it's perhaps not surprising that there is very little consistency in which way early maps pointed. In ancient Egyptian times the top of the world was east, the position of sunrise. Early Islamic maps favoured south at the top because most of the early Muslim cultures were north of Mecca, so they imagined looking up (south) towards it. Christian maps from the same era (called Mappa Mundi) put east at the top, towards the Garden of Eden and with Jerusalem in the centre.So when did everyone get together and decide that north was the top? It's tempting to put it down to European explorers like Christopher Columbus and Ferdinand Megellan, who were navigating by the North Star. But Brotton argues that these early explorers didn't think of the world like that at all. "When Columbus describes the world it is in accordance with east being at the top, he says. "Columbus says he is going towards paradise, so his mentality is from a medieval mappa mundi." We've got to remember, adds Brotton, that at the time, "no one knows what they are doing and where they are going."Which one of the following best describes what the passage is trying to do?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Please read the three reports (newspaper articles) on ranking of different players and products in smart phones industry and answer the questions that follow. Report 1: (Feb, 2013) Apple nabs crown as current top US mobile phone vendor Apple’s reign may not be long, as Samsung is poised to overtake Apple in April, 2013. For the first time since Apple entered the mobile phone market in 2007, it has been ranked the top mobile phone vendor in the US. For the latter quarter of 2012, sales of its iPhone accounted for 34 percent of all mobile phone sales in the US - including feature phones - according to the latest data from Strategy Analytics. While the iPhone has consistently been ranked the top smartphone sold in the US, market research firm NPD noted that feature phone sales have fallen off a cliff recently, to the point where 8 out of every 10 mobile phones sold in the US are now smartphones. That ratio is up considerably from the end of 2011, when smartphones had just cracked the 50 percent mark. Given this fact it’s no surprise that Apple, which only sells smartphones, has been able to reach the top of the overall mobile phone market domestically. For the fourth quarter of 2012, Apple ranked number one with 34 percent of the US mobile market, up from 25.6 percent year over year. Samsung grew similarly, up to 32.3 percent from 26.9 percent - but not enough to keep from slipping to second place. LG dropped to 9 percent from 13.7 percent, holding its third place spot. It should be noted that Samsung and LG both sell a variety of feature phones in addition to smartphones. Looking only at smartphones, the ranking is a little different according to NPD. Apple holds the top spot with 39 percent of the US smartphone market, while Samsung again sits at number two with 30 percent. Motorola manages to rank third with 7 percent, while HTC dropped to fourth with 6 percent. In the US smartphone market, LG is fifth with 6 percent. Note how the percentages aren’t all that different from overall mobile phone market share - for all intents and purposes, the smartphone market is the mobile phone market in the US going forward. Still, Samsung was the top mobile phone vendor overall for 2012, and Strategy Analytics expects Samsung to be back on top soon. “Samsung had been the number one mobile phone vendor in the US since 2008, and it will surely be keen to recapture that title in 2013 by launching improved new models such as the rumored Galaxy S4”. And while Apple is the top vendor overall among smartphones, its iOS platform is still second to the Android platform overall. Samsung is the largest vendor selling Android-based smartphones, but Motorola, HTC, LG, and others also sell Android devices, giving the platform a clear advantage over iOS both domestically and globally. Report 2: Reader’s Response (2013, Feb) I don’t actually believe the numbers for Samsung. Ever since the debacle in early 2011, when Lenovo called into question the numbers Samsung was touting for tablet shipments, stating that Samsung had only sold 20,000 of the 1.5 million tablets they shipped into the US the last quarter of 2010, Samsung (who had no response to Lenovo) has refused to supply quarterly sales numbers for smartphones or tablets. That’s an indication that their sales aren’t what analysts are saying. We can look to several things to help understand why. In the lawsuit between Apple and Samsung here last year, both were required to supply real sales numbers for devices under contention. The phones listed turned out to have sales between one third and one half of what had been guessed by IDC and others. Tablet sales were even worse. Of the 1.5 million tablets supposedly shipped to the US during that time, only 38,000 were sold. Then we have the usage numbers. Samsung tablets have only a 1.5% usage rate, where the iPad has over 90%. Not as much a difference with the phones but it’s still overwhelmingly in favor of iPhone. The problem is that with Apple’s sales, we have actual numbers to go by. The companies who estimate can calibrate what they do after those numbers come out. But with Samsung and many others, they can’t ever calibrate their methods, as there are no confirming numbers released from the firms. A few quarters ago, as a result, we saw iSupply estimate Samsung’s smartphone sales for the quarter at 32 million, with estimates from others all over the place up to 50 million. Each time some other company reported a higher number for that same quarter, the press dutifully used that higher number as THE ONE. But none of them was the one. Without accurate self-reporting of actual sales to the end users, none of these market share charts are worth a damn! Report 3: Contradictory survey (Feb, 2013) iPhone5 Ranks Fifth In U.S. Customer Satisfaction Survey inShare. The iPhone5 ranks fifth in customer satisfaction according to the results of a recent survey from OnDevice Research, a mobile device research group. In the poll, they asked 320,000 smartphone and tablet users from six different countries, how satisfied they were with their devices. According to 93,825 people from the US, Motorola Atrix HD is the most satisfying and Motorola’s Droid Razr took second spot. HTC Corp (TPE : 2498)’s Rezound 4G and Samsung Galaxy Note 2 took third and fourth spots, while Apple’s iPhone5 landed in fifth spot. It appears that Apple may be lagging in consumer interest. OnDevice Research, Sarah Quinn explained, “Although Apple created one of the most revolutionary devices of the past decade, other manufactures have caught up, with some Android powered devices now commanding higher levels of user satisfaction.” Despite the lower rankings, things aren’t looking too bad for Apple Inc. (NASDAQ:AAPL) elsewhere. In the United Kingdom, they ranked second place, right after HTC One X. Interesting enough, Apple did take top spot for overall satisfaction of mobile device, whereas Google Inc. (NASDAQ:GOOG) ranked second. Motorola Mobility Holdings Inc. (NYSE:NOK) took third, fourth, and fifth places respectively, while Sony Ericsson trailed behind at sixth place. The survey sampled mobile device users in the following countries: United States, United Kingdom, France, Germany, Japan, and Indonesia. Although OnDevice didn’t share the full list of devices mentioned in the survey, it does show some insight to what customers want. Unfortunately, there were still many questions regarding the survey that were left unanswered. Everyone wants to know why Google Inc. (NASDAQ:GOOG) was on the list when they are not an actual smartphone maker and why was Samsung Electronics Co., Ltd. (LON:BC94) on the bottom of the satisfaction list when the brand is leading elsewhere. Source: 92.825 US mobile users, July 2012 - January 2013 Fortunately, those questions were answered by OnDevice Research’s representative. He explained that the survey was conducted on mobile web where the survey software could detect the taker’s device and since user’s rate their satisfaction levels on a 1 to 10 scale, thanks to the Nexus device, Google was included.If you analyze the three reports above, which of the following statements would be the best inference?
 ....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
MCQ-> Read the following passage carefully and answer the given questions. Certain words/phrases are given in bold to help you locate them while answering some of the questions. At first glance the patriarchy appears to be thriving. More than 90% of presidents and prime ministers are male, as are all nearly big corporate bosses. Men dominate finance, technology, films, sports, music and even stand­up comedy. In much of the world they still enjoy social and legal privileges simply because :hey have a Y chromosome. So it might seem odd to worry about the plight of men. Yet there is plenty of cause for concern. Men cluster at the bottom as well at the top. Poorly educated men in rich countries have had difficulty coping with the enormous changes in the labour market and the home over the past half­century. As technology and trade have devalued brawn, less­educated men have struggled to find a role in the workplace. Women, on the other hand, are surging into expanding sectors such as health care and education, helped by their superior skills. As education has become more important, boys have also fallen behind girls in school (except at the very top). Men who lose jobs in manufacturing often never work again. And men without work find it hard to support a family. The result for low­skilled men, is a poisonous combination of no job, no family and no prospects. Some tend to focus on economics. Shrinking job opportunities for men, they say, are entrenching poverty and destroying families. In America pay for men with only a high­school certificate fell by 21% in real terms between 1979 and 2013, for women with similar qualifications it raised by 3%. Around a fifth of working­age American men with only a high­school have no job. But both economic and social changes are to blame, and the two causes reinforce each other. Moreover, these problems are likely to get worse. Technology will disrupt more industries, creating benefits for society but rendering workers who fail to update their skills redundant. The OECD, a think­tank, predicts that the absolute number of single­parent households will continue to rise in nearly all rich countries. Boys who grow up without fathers are more likely to have trouble forming lasting relationships, creating a cycle of male dysfunction. What can be done? Part of the solution lies in a change in cultural attitudes. Over the past generation, men have learned that they need to help with child care and have changed their behaviour. Women have learned that they can be surgeons and physicists not at the cost of motherhood. Policymakers also need to lend a hand, because foolish laws are making the problem worse. Governments need to recognise that boys' underachievement is a serious problem and set about fixing it. Some sensible policies that are good for everybody are particularly good for boys. Early­childhood education provides boys with more structure and a better chance of developing verbal and social skills. Countries with successful vocational systems such as Germany have done a better job motivating non­academic boys and guiding them into jobs, but policymakers need to reinvent vocational education for an age when trainers are more likely to get jobs in hospitals than factories. The growing equality of the genders is one of the biggest achievements of the post­war era people have greater opportunities than ever before to achieve their ambitions regardless of their gender. But some even have failed to cope with this new world. It is time to give them a hand.What do the statistics in the passage with regard to America indicate?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions