1. Find out the wrong number in given sequence : 6, 13, 18, 25, 30, 37, 40





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Find the odd one out in the sequence of numbers.2,5,10,17,26,37,50 ?....
QA->Find the next letter in the sequence A, D, I, P, …… ?....
QA->The correct sequence of missing letters in ba - a – aab:....
QA->Which is the correct sequence in terms of descending values of Albedo?....
QA->Photosynthesis proceeds in which sequence?....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ-> In each of the following questions two rows of number are given. The resultant number in each row is to be worked out separately based on the following rules and the question below the row is to be answered. The operations of number progress from the left to right. Rules: (i) If an even number is followed by another even number they are to be added. (ii) If an even number is followed by a prime number, they are to be multiplied. (iii) If an odd number is followed by an even number, even number is to be subtracted from the odd number. (iv) If an odd number is followed by another odd number the first number is to be added to the square of the second number. (v) If an even number is followed by a composite odd number, the even number is to be divided by odd number.I. 84 21 13 II. 15 11 44 What is half of the sum of the resultants of the two rows ?....
MCQ-> In each of the following questions two rows of numbers are given. The resultant number in each row is to be worked out separately based on the following rules and the questions below the rows of numbers are to be answered. The operations of numbers progress from left to right. Rules: (a) If an odd number is followed by a two digit even number then they are to be added. (b) If an odd number is followed by a two digit odd number then the second number is to be subtracted from the first number. (c) If an even number is followed by a number which is a perfect square of a number then the second number is to be divided by the first number. (d) If an even number is followed by a two digit even number then he first number is to be multiplied by the second number.15 11 20 400 8 12 10 If the resultant of the second set of a numbers is divided by the resultant of the first set of numbers what will be the outcome ?....
MCQ-> Study the following information carefully to answer the given questions.This data is regarding number of Junior Coliege students, Graduate students and Post-Graduate students (PG) only, studying in colleges A, B, C and D. The respective ratio between the total number of students studying in the Colleges A, B, C and D is 3 : 5 : 2 : 5. In College A, 40% of the total number of students are Junior College students. Out of the remaining, the respective ratio between the number of Graduate students and number of PG students is 5 : 4. In College B, $${2 \over 5}$$th of the total number of students are Junior College students. Out of the remaining, the respective ratio between the number of Graduate students and number of PG students is 5 : 3. In College C, 50% of the total number of students are Junior College students. Out of the remaining, $${5 \over 8}$$th are Graduate students and the remaining are PG students.In College D, 35% of the total number of students are Graduate students,$$ {8 \over {13}}$$th of the remaining students are Junior College students and the rest 1500 are PG students.What is the respective ratio between the total number of graduate students in College A and the total number of Graduate students in College B?
 ....
MCQ-> Mathematicians are assigned a number called Erdos number (named after the famous mathematician, Paul Erdos). Only Paul Erdos himself has an Erdos number of zero. Any mathematician who has written a research paper with Erdos has an Erdos number of 1.For other mathematicians, the calculation of his/her Erdos number is illustrated below:Suppose that a mathematician X has co-authored papers with several other mathematicians. 'From among them, mathematician Y has the smallest Erdos number. Let the Erdos number of Y be y. Then X has an Erdos number of y+1. Hence any mathematician with no co-authorship chain connected to Erdos has an Erdos number of infinity. :In a seven day long mini-conference organized in memory of Paul Erdos, a close group of eight mathematicians, call them A, B, C, D, E, F, G and H, discussed some research problems. At the beginning of the conference, A was the only participant who had an infinite Erdos number. Nobody had an Erdos number less than that of F.On the third day of the conference F co-authored a paper jointly with A and C. This reduced the average Erdos number of the group of eight mathematicians to 3. The Erdos numbers of B, D, E, G and H remained unchanged with the writing of this paper. Further, no other co-authorship among any three members would have reduced the average Erdos number of the group of eight to as low as 3.• At the end of the third day, five members of this group had identical Erdos numbers while the other three had Erdos numbers distinct from each other.• On the fifth day, E co-authored a paper with F which reduced the group's average Erdos number by 0.5. The Erdos numbers of the remaining six were unchanged with the writing of this paper.• No other paper was written during the conference.The person having the largest Erdos number at the end of the conference must have had Erdos number (at that time):
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions