1. If input frequency of a full wave rectifier be n, then output frequency would be:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->The part of a torque converter that facilitates change of torque between input and output shaft is the:....
QA->BIOS (Basic Input Output System) software stored on :....
QA->The amount of input tax that is permitted to be sent off against output tax ?....
QA->Not a Bernstein’s condition for two processes P1 and P2 executing in parallel on input set I1 and I2, producing output set 0 1 and 0 2 respectively.....
QA->Scientists develop world’s first wireless flexible smartphone.Researchers atQueen’s University’s Human Media Lab have developed the world’s first full-colour,high-resolution and wireless flexible smartphone to combine multitouch withbend input.....
MCQ->Consider the following rectifier circuits : half-wave rectifier without filterfull-wave rectifier without filterfull-wave rectifier with series inductance filterfull-wave rectifier with capacitance filter. The sequence of these rectifier circuits in decreasing order of their ripple factor is....
MCQ->Assertion (A): In a full wave rectifier output the lowest ac component is at twice the input frequencyReason (R): In a full wave rectifier, the output waveform consists of half sinusoids

....
MCQ->Assertion (A): A half wave controlled rectifier has poorer efficiency and higher ripple factor than a full wave controlled rectifier.Reason (R): The use of a freewheeling diode in half wave controlled rectifier circuit improves the waveform of load current and circuit power factor.

....
MCQ-> Read the following passage carefully and answer the question given below it.Certain words/phrase have-been printed in the bold to help you locate them while answering some of the questions. King Hutamasan felt he had everything in the world not only due to his riches and his noble knights but because of his beautiful queen Rani Matsya The rays of the sun were put to shame with the iridescent light that Matsya illuminated with her beauty and brains At the right hand of the king she was known to sit and aid him in all his judicial probes You could not escape her deep-set eyes when you committed a crime as she always knew the and the culprit Her generosity preceded her reputation in the kingdom and her hands were always full to give people in the kingdom revered her because if she passed by she always gave to the compassionate and poor Far away from the kingly palace lived a man named Raman with only ends to his poverty as he had lost all his land to the landlord,His age enabled him little towards manual labour and so begging was the only alternative to salvage his wife and children Every morning he went door to door for some work food or money.The kindness of people always got him enough to take home But Raman was a little self centered His world began with him first followed by his family and the rest So he would eat and drink to his delight and return home with whatever he found excess This routine followed and he never let anyone discover his interest as he always put on a long face when he reached home. One day as he was relishing the bowl of rice he had just received from a humble home he heard that Rani Matsya was to pass from the very place he was standing Her generosity had reached his ears and he knew if he pulled a long face and showed how poor he was she would hand him a bag full of gold coins enough for the rest of his life enough to buy food and supplies for his family.He thought he could keep some coins for himself and only reveal a few to his wife so he can fulfill his own wishes. He ran to the chariot of the Rani and begged her soldiers to allow him to speak to the queen Listening to the arguments outside Rani Matsya opened the curtains of her chariot and asked Raman what he wanted Raman went on his knees and praised the queen I have heard you are most generous and most chaste show this beggar some charity Rani narrowed her brows and asked Raman what he could give her in return Surprised by such a question Raman looked at his bowl full of rice With spite in him he just picked up a few grains of rice and gave it to the queen Rani Matsya counted the 5 grains and looked at his bowl full of rice and said you shall be given what is due to you Saying this the chariot galloped away Raman abused her under his breath This he never thought would happen How could she ask him for something in return when she hadn’t given him anything ? Irked with anger he stormed home and gave his wife the bowl of rice Just then he saw a sack at the enterence His wife said some men had come and kept it there He opened it to find it full of rice He put his hand inside and caught hold of a hard metal only to discover it was a gold coin Elated he upturned the sack to find 5 gold coins in exact for the five rice grains If only I had given my entire bowl thought Raman I would have had a sack full of gold.According to the passage which of the following is definitely true about Rani Matsya ? (A)She was beautiful (B)She was intelligent (C)She was kind....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions