1. When reinforcement bars placed short of their required length need to be extended,we use:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->PrimeMinister made his last day to which country and to uplift their partnership andalso extended support for inclusion of India into Nuclear Suppliers Group?....
QA->Data rate of a ring network is 20Mbps and signal propagates at 200m/µsec. The number of bits that can be placed on the channel of length 200km is :....
QA->The doctor convicted of killing Michael Jackson has been sentenced to the maximum term of four years behind bars recently. Name of the Doctor?....
QA->Who is the author of the book "Freedom Behind Bars" ?....
QA->In 2014, which Legisalative Assembly passed a billprohibiting dance bars in hotels all over the state?....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in ‘’bold’’ to help you locate them while answering some of the questions.As increasing dependence on information systems develops, the need for such system to be reliable and secure also becomes more essential. As growing numbers of ordinary citizens use computer networks for banking, shopping, etc., network security in potentially a ‘’massive’’ problem. Over the last few years, the need for computer and information security system has become increasingly evident, as web sites are being defaced with greater frequency, more and more denial-of-service attacks are being reported, credit card information is being stolen, there is increased sophistication of hacking tools that are openly available to the public on the Internet, and there is increasing damage being caused by viruses and worms to critical information system resources.At the organizational level, institutional mechanism have to be designed in order to review policies, practices, measures and procedures to review e-security regularly and assess whether these are appropriate to their environment. It would be helpful if organizations share information about threats and vulnerabilities, and implement procedures of rapid and effective cooperation to prevent, detect and respond to security incidents. As new threats and vulnerabilities are continuously discovered there is a strong need for co-operation among organizations and, if necessary, we could also consider cross-border information sharing. We need to understand threats and dangers that could be ‘’vulnerable’’ to and the steps that need to be taken to ‘’mitigate’’ these vulnerabilities. We need to understand access control systems and methodology, telecommunications and network security, and security management practise. We should be well versed in the area of application and systems development security, cryptography, operations security and physical security.The banking sector is ‘’poised’’ for more challenges in the near future. Customers of banks can now look forward to a large array of new offerings by banks, from an ‘’era’’ of mere competition, banks are now cooperating among themselves so that the synergistic benefits are shared among all the players. This would result in the information of shared payment networks (a few shared ATM networks have already been commissioned by banks), offering payment services beyond the existing time zones. The Reserve Bank is also facilitating new projects such as the Multi Application Smart Card Project which, when implemented, would facilitate transfer of funds using electronic means and in a safe and secure manner across the length and breadth of the country, with reduced dependence on paper currency. The opportunities of e-banking or e-power is general need to be harnessed so that banking is available to all customers in such a manner that they would feel most convenient, and if required, without having to visit a branch of a bank. All these will have to be accompanied with a high level of comfort, which again boils down to the issue of e-security.One of the biggest advantages accruing to banks in the future would be the benefits that arise from the introduction of Real Time Gross Settlement (RTGS). Funds management by treasuries of banks would be helped greatly by RTGS. With almost 70 banks having joined the RTGS system, more large value funds transfer are taking place through this system. The implementation of Core Banking solutions by the banks is closely related to RTGS too. Core Banking will make anywhere banking a reality for customers of each bank. while RTGS bridges the need for inter-bank funds movement. Thus, the days of depositing a cheque for collection and a long wait for its realization would soon be a thing of the past for those customers who would opt for electronic movement of funds, using the RTGS system, where the settlement would be on an almost ‘’instantaneous’’ basis. Core Banking is already in vogue in many private sector and foreign banks; while its implementation is at different stages amongst the public sector banks.IT would also facilitate better and more scientific decision-making within banks. Information system now provide decision-makers in banks with a great deal of information which, along with historical data and trend analysis, help in the building up of efficient Management Information Systems. This, in turn, would help in better Asset Liability Management (ALM) which, today’s world of hairline margins is a key requirement for the success of banks in their operational activities. Another benefit which e-banking could provide for relates to Customer Relationship Management (CRM). CRM helps in stratification of customers and evaluating customer needs on a holistic basis which could be paving the way for competitive edge for banks and complete customer care for customer of banks.The content of the passage ‘’mainly’’ emphasizes----
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words have been printed in ‘’bold’’ to help you locate them while answering some of the questions.The evolution of Bring Your Own Device (BYOD) trend has been as profound as it has been rapid. It represents the more visible sign that the boundaries between personal life and work life are blurring. The 9 a.m. - 5 p.m. model of working solely from office has become archaic and increasingly people are working extended hours from a range of locations. At the very heart of this evolution is the ability to access enterprise networks from anywhere and anytime. The concept of cloud computing serves effectively to extend the office out of office. The much heralded benefit of BYOD is greater productivity. However, recent research has suggested that this is the greatest myth of BYOD and the reality is that BYOD in practise poses new challenges that may outweigh the benefits. A worldwide commissioned by Fortinet choose to look at attitudes towards BYOD and security from the user’s point of view instead of the IT managers. Specifically the survey was conducted in 15 territories on a group of graduate employees in their early twenties because they represent the first generation to enter the workplace with an expectation of own device use. Moreover, they also represent tomorrow’s influences and decision markers. The survey findings reveals that for financial organizations, the decision to embrace BYOB is extremely dangerous. Larger organizations will have mature IT strategies and policies in place. But what about smaller financial business? They might not have such well developed strategies to protect confidential data. Crucially, within younger employee groups, 55% of the people share an expectation that they should be allowed to use their own devices in the workplace or for work purposes. With this expectation comes the very real risk that employees may consider contravening company policy banning the use of own devices. The threats posed by this level of subversion cannot be overstated. The survey casts doubt on the idea of BYOD leading to greater productivity by revealing the real reason people want to use their own devices. Only 26% of people in this age group cite efficiency as the reason they want to use their own devices, while 63% admit that the main reason is so they have access to their favourite applications. But with personal applications so close to hand, the risks to the business must surely include distraction and time wasting. To support this assumption 46% of people polled acknowledged time wasting as the greatest threat to the organization, while 42% citing greater exposure to theft or loss of confidential data. Clearly, from a user perspective there is great deal of contradiction surroundings BYOB and there exists an undercurrent of selfishness where users expect to use their own devices, but mostly for personal interest. They recognize the risks to the organization but are adamant that those risks are worth talking.According to the passage, for which of the following reasons did Fortinet conduct the survey on a group of graduate employees in their early twenties?A: As this group represents the future decision makers B: As this group represents the first generation who entered the workforce with a better understanding of sophisticated gadgets C: As this group represents the first generation to enter the workplace expecting that they can use their own devices for work purpose....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain word/phrases have been printed in bold to help you locate them while answering some of the questions.The men of Suvarnanagari were very lazy. They only liked to gossip and tell each other tall tales. As soon as the sun rose, the men would tuck into hearty breakfast and then gather in groups for their daily session of gossiping. Then they would spend the rest of the day telling each other impossible stories. They came back only at lunch and dinner time. The farmlands of Suvarnanagari were very fertile. If the men had spent even a little time at fields, they would have reaped wonderful crops. But as they did nothing, all the responsibilities ended up on shoulders of the woman. They had to work hard the whole day. They cooked, cleaned, sent the children to school, worked in the fields, took the crops to the market - in short they did everything. One day the tired woman gathered and decided that the men needed to be taught a lesson. One of them suggested that they should write to the king about their problem, as he was known to be just and a kind person. So the letter was written and sent to the king. The women went back to their daily routines, hoping that the king would soon take some action. Many days passed, nothing changed, no one came, and the poor women began to lose hope. ‘After all why would the king of such a vast empire be concerned about the plight of the women of such a tiny village?’ they thought. A month passed by and it was a full moon night. The men ate their dinners and because it was so beautiful and well lit outside, they gathered again to chat and boast. That night they were trying to prove to one another that they were capable of performing the most impossible tasks. Soon a tall and handsome stranger joined them. Seeing his noble features and intelligent eyes, each one wanted to prove himself better than the others and impress to him. One said, ‘’I knew the map of this kingdom even before I was born. I ran to meet the king as soon as I was born, my mother had such trouble bringing me back home !’’ Everyone was impressed by this story. Soon another man said, ‘’So what is so great about that ? When I was a just a day old, I could ride a horse. I sat on a big horse and rode all the way to the king’s palace. He received me with lot of love and we had the most delicious meal together.’’ This was even more impressive, so everyone applauded. Now the third man said, ‘’Huh! That is nothing. I sat on an elephant when I was a week old and had lunch with the king in his palace.’’Before the admiring murmurs could die down, the fourth man said, ‘’When I was a month old, I flew like a bird and landed in the king’s garden. The king picked me up and even let me sit on his throne with him,’’ While everyone was in awe of these stories, the stranger spoke up, ‘’ Do all four of you know the king very well?’’ ‘’Of course we do! ‘’ they replied together. ‘’Our king knows and love us. In fact, he is proud to have supernatural beings like us in his kingdom,’’ one of them added. The stranger looked thoughtful. ‘’That makes my task so much easier. You see, I work in the king’s court. Some days ago the king had summoned four supermen to the city in order to repair a large hole in the city wall. As you know, we use only the largest and toughest stones for building these walls, and they could be lifted and put in place only by these supermen. The four supermen asked to be paid in gold bars and the king complied.But the night they received their fee, they disappeared from the palace. I have been wandering around ever since looking for them. The king has ordered me to find the four men and bring them back to the capital to finish the work. They will also have to return the gold bars they ran away with. It looks like the search has finally ended. I will take the four of you to the king along with the gold bars. The king will be very pleased with me and will surely reward me,’’ said the stranger. By the time the stranger finished his story, the four men realised that their lies had landed them into a huge trouble. Their faces turned ashamed and they dived at the stranger’s feet. ‘’Those were all lies. We are all just a bunch of lazy men. But if you forgive us and forget our stories, we promise to do some honest work and stop telling such lies,’’ they wailed. The stranger smiled and said, ’’Alright, I will tell the king there are no supermen in this village, just honest and hardworking men and women.’’ That night the stranger left the village. The women were sure that it was none other than the king himself.How did the men of Suvarnanagiri spend their days ?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions