1. The loss in signal power as light travels down the fiber is called






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Red light is used as danger signal because it....
QA->Whichbank has estimated a loss of Rs. 5,380 Crore in the Final Quarter, the biggestever quarterly loss in India’s Bank History?....
QA->WHICH COLOUR OF LIGHT TRAVELS MOST SLOWLY THROUGH GLAS S....
QA->Total internal reflection can take place when light travels from which thing?....
QA->Which of the following is most resistant to electrical and noise interference ?( Fiber, UDP , Coax, STP)....
MCQ->Oat cereal has more fiber than corn cereal but less fiber than bran cereal. Corn cereal has more fiber than rice cereal but less fiber than wheat cereal. Of the three kinds of cereal, rice cereal has the least amount of fiber. If the first two statements are true, the third statement is....
MCQ-> Study the following information carefully and answer the questions given below : A, B, C, D, E, F and G are seven persons who travel to of ce everyday by a particular train which stops at ve stations-I, II, III, IV and V respectively after it leaves base station. Three among them get in the train at the base station. D gets down at the next station at which F gets down. B does not get down either with A or E. G alone gets in at station III and gets down with C after one station. A travels between only two stations and gets down at station V. None of them gets in at station II. C gets in with F but does not get in with either B or D. E gets in with two others and gets down alone after D. B and D work in the same of ce and they get down together at station III. None of them gets down at station I.At which station does E get down ?
 ....
MCQ-> Answer the questions based on the following information. In a motor race competition certain rules are given for the participants to follow. To control direction and speed of the motorists, guards are placed at different signal points with caps of different colour. Guard with red cap indicates the direction of participant’s movement and guards with green cap indicates the speed of the participant’s movement. At any signal point presence of three guards, two guards and one guard with red cap means the participant must stop, turn left and turn right respectively. Signal points with three guards, two guards and one guard with green cap means the participants must move at 10, 4 and 2 km/hour respectively. Kartikay, one of the participants, starts at a point where his car was heading towards north and he encountered signals as follows: at start point one guard with green cap; after half an hour two guards with red cap and two guards with green cap at first signal; after fifteen minutes one guard with red cap at second signal; after half an hour one guard with red cap and three guards with green caps at third signal; after 24 minutes two guard with red cap and two guards with green cap at fourth signal; after 15 minutes three guard with red cap at fifth signal. (Time mentioned in each case is applicable after crossing the previous signal).Total distance travelled by Kartikay from starting point till last signal is:
 ....
MCQ-> A country has the following types of traffic signals.3 red lights = stop2 red lights = turn left1 red light = turn right3 green lights = go at 100 km/hr speed2 green lights = go at 40 km/hr speed1 green light = go at 20 km/hr speedA motorist starts at a point on a road and follows all traffic signals. His car is heading towards the north. He encounters the following signals (the time mentioned in each case below is applicable after crossing the previous signal).Starting point - 1 green lightAfter half an hour, 1st signal - 2 red and 2 green lightsAfter 15 min, 2nd signal - 1 red lightAfter half an hour, 3rd signal - 1 red and 3 green lightsAfter 24 min, 4th signal - 2 red and 2 green lightsAfter 15 min, 5th signal - 3 red lightsThe total distance travelled by the motorist from the starting point till the last signal is
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions