1. Which of the following words is most closely related to ELEMENT?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Sabir Bhatia is most closely associated with:....
QA->Which country is the happiest country in the world, closely followed by Iceland, Denmark, Norway and Canada, according to a global ranking of happiness unveiled in New York?....
QA->Of which country Indian Constitution closely follows the constitutional system?....
QA->Mark stands well with his boss. Stands well closely me....
QA->The Indian Constitution closely follows the constitutional system of ?....
MCQ-> The highest priced words are ghost-written by gagmen who furnish the raw material for comedy over the air and on the screen. They have a word-lore all their own, which they practise for five to fifteen hundred dollars a week, or fifteen dollars a gag at piece rates. That's sizable rate for confounding acrimony with matrimony, or extracting attar of roses from the other.Quite apart from the dollar sign on it, gagmen's word-lore is worth a close look, if you are given to the popular American pastime of playing with words — or if you're part of the 40 per cent who make their living in the word trade. Gag writers' tricks with words point up the fact that we have two distinct levels of language: familiar, ordinary words that everybody knows; and more elaborate words that don't turn up so often, but many of which we need to know if we are to feel at home in listening and reading today.To be sure gagmen play hob with the big words, making not sense but fun of them. They keep on confusing bigotry with bigamy, illiterate with illegitimate, monotony with monogamy, osculation with oscillation. They trade on the fact that for many of their listeners, these fancy terms linger in a twilight zone of meaning. It’s their deliberate intent to make everybody feel cozy at hearing big words, jumbled up or smacked down. After all, such words loom up over-size in ordinary talk, so no wonder they get the bulldozer treatment from the gagmen.Their wrecking technique incidentally reveals our language as full of tricky words, some with 19 different meanings, others which sound alike but differ in sense. To ring good punning changes, gag writers have to know their way around in the language. They don't get paid for ignorance, only for simulating it.Their trade is a hard one, and they regard it as serious business. They never laugh at each other's jokes; rarely at their own. Like comediennes, they are usually melancholy men in private life.Fertile invention and ingenious fancy are required to clean up ‘blue’ burlesque gags for radio use. These shady gags are theoretically taboo on the air. However, a gag writer who can leave a faint trace of bluing when he launders the joke is all the more admired — and more highly paid. A gag that keeps the blue tinge is called a ‘double intender’, gag-land jargon for double entendre. The double meaning makes the joke funny at two levels. Children and other innocents hearing the crack for the first time take it literally, laughing at the surface humour; listeners who remember the original as they heard it in vaudeville or burlesque, laugh at the artfulness with which the blue tinge is disguised.Another name for a double meaning of this sort is ‘insinuendo’. This is a portmanteau word or ‘combo’, as the gagmen would label it, thus abbreviating combination. By telescoping insinuation and innuendo, they get insinuendo, on the principle of blend words brought into vogue by Lewis Caroll. ‘Shock logic’ is another favourite with gag writers. Supposedly a speciality of women comediennes, it is illogical logic more easily illustrated than defined. A high school girl has to turn down a boy's proposal, she writes:Dear Jerry, I'm sorry, but I can't get engaged to you. My mother thinks I am too young to be engaged and besides, I'm already engaged to another boy. Yours regretfully. Guess who.Gag writers' lingo is consistently funnier than their gags. It should interest the slang-fancier. And like much vivid jargon developed in specialised trades and sports, a few of the terms are making their way into general use. Gimmick, for instance, in the sense either of a trick devised or the point of a joke, is creeping into the vocabulary of columnists and feature writers.Even apart from the trade lingo, gagmen's manoeuvres are of real concern to anyone who follows words with a fully awakened interest. For the very fact that gag writers often use a long and unusual word as the hinge of a joke, or as a peg for situation comedy, tells us something quite significant: they are well aware of the limitations of the average vocabulary and are quite willing to cash in on its shortcomings.When Fred Allens' joke-smiths work out a fishing routine, they have Allen referring to the bait in his most arch and solemn tones: "I presume you mean the legless invertebrate." This is the old minstrel trick, using a long fancy term, instead of calling a worm a worm. Chico Marx can stretch a pun over 500 feet of film, making it funnier all the time, as he did when he rendered, "Why a duck?"And even the high-brow radio writers have taken advantage of gagmen's technique. You might never expect to hear on the air such words as lepidopterist and entymologist. Both occur in a very famous radio play by Norman Corvine, ‘My client Curly’, about an unusual caterpillar which would dance to the tune ‘yes, sir, she's my baby’ but remained inert to all other music. The dancing caterpillar was given a real New York buildup, which involved calling in the experts on butterflies and insects which travel under the learned names above. Corvine made mild fun of the fancy professional titles, at the same time explaining them unobtrusively.There are many similar occasions where any one working with words can turn gagmen's trade secrets to account. Just what words do they think outside the familiar range? How do they pick the words that they ‘kick around’? It is not hard to find out.According to the writer, a larger part of the American population
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> In each of the following questions in four out of the five figures. element 1 is related to element 2 in the same particular way. Find out the figure in which the element 1 is not so related to element 2.....
MCQ-> In each of the following questions in four out of the five figures, element 1 is related to element 2 in the same particular way. Find out the figure in which the element 1 is not so related to element 2.....
MCQ-> Studies of the factors governing reading development in young children have achieved a remarkable degree of consensus over the past two decades. The consensus concerns the causal role of ‘phonological skills in young children’s reading progress. Children who have good phonological skills, or good ‘phonological awareness’ become good readers and good spellers. Children with poor phonological skills progress more poorly. In particular, those who have a specific phonological deficit are likely to be classified as dyslexic by the time that they are 9 or 10 years old.Phonological skills in young children can be measured at a number of different levels. The term phonological awareness is a global one, and refers to a deficit in recognising smaller units of sound within spoken words. Development work has shown that this deficit can be at the level of syllables, of onsets and rimes, or phonemes. For example, a 4-year old child might have difficulty in recognising that a word like valentine has three syllables, suggesting a lack of syllabic awareness. A five-year-old might have difficulty in recognizing that the odd work out in the set of words fan, cat, hat, mat is fan. This task requires an awareness of the sub-syllabic units of the onset and the rime. The onset corresponds to any initial consonants in a syllable words, and the rime corresponds to the vowel and to any following consonants. Rimes correspond to rhyme in single-syllable words, and so the rime in fan differs from the rime in cat, hat and mat. In longer words, rime and rhyme may differ. The onsets in val:en:tine are /v/ and /t/, and the rimes correspond to the selling patterns ‘al’, ‘en’ and’ ine’.A six-year-old might have difficulty in recognising that plea and pray begin with the same initial sound. This is a phonemic judgement. Although the initial phoneme /p/ is shared between the two words, in plea it is part of the onset ‘pl’ and in pray it is part if the onset ‘pr’. Until children can segment the onset (or the rime), such phonemic judgements are difficult for them to make. In fact, a recent survey of different developmental studies has shown that the different levels of phonological awareness appear to emerge sequentially. The awareness of syllables, onsets, and rimes appears to merge at around the ages of 3 and 4, long before most children go to school. The awareness of phonemes, on the other hand, usually emerges at around the age of 5 or 6, when children have been taught to read for about a year. An awareness of onsets and rimes thus appears to be a precursor of reading, whereas an awareness of phonemes at every serial position in a word only appears to develop as reading is taught. The onset-rime and phonemic levels of phonological structure, however, are not distinct. Many onsets in English are single phonemes, and so are some rimes (e.g. sea, go, zoo).The early availability of onsets and rimes is supported by studies that have compared the development of phonological awareness of onsets, rimes, and phonemes in the same subjects using the same phonological awareness tasks. For example, a study by Treiman and Zudowski used a same/different judgement task based on the beginning or the end sounds of words. In the beginning sound task, the words either began with the same onset, as in plea and plank, or shared only the initial phoneme, as in plea and pray. In the end-sound task, the words either shared the entire rime, as in spit and wit, or shared only the final phoneme, as in rat and wit. Treiman and Zudowski showed that four- and five-year-old children found the onset-rime version of the same/different task significantly easier than the version based on phonemes. Only the sixyear- olds, who had been learning to read for about a year, were able to perform both versions of the tasks with an equal level of success.From the following statements, pick out the true statement according to the passage.
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions