1. Newton's law of viscosity states that:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->A high viscosity index of lubricating oil indicates:....
QA->When temperature increases viscosity of fluids:....
QA->Kinematic viscosity is the :....
QA->If temperature rises; what will be the coefficient of viscosity of liquid?....
QA->If temperature rises, what will be the coefficient of viscosity of liquid?....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->In Newton's law of viscosity, which states that the shear stress is proportional to the __________ Co-efficient of viscosity is called dynamic or absolute viscosity(where, V = velocity, Vg = velocity gradient ).....
MCQ->Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton's law of viscosity. (II) Newton's second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to boundary. (V) Fluid cannot penetrate a boundary.....
MCQ-> The persistent patterns in the way nations fight reflect their cultural and historical traditions and deeply rooted attitudes that collectively make up their strategic culture. These patterns provide insights that go beyond what can be learnt just by comparing armaments and divisions. In the Vietnam War, the strategic tradition of the United States called for forcing the enemy to fight a massed battle in an open area, where superior American weapons would prevail. The United States was trying to re-fight World War II in the jungles of Southeast Asia, against an enemy with no intention of doing so. Some British military historians describe the Asian way of war as one of indirect attacks, avoiding frontal attacks meant to overpower an opponent. This traces back to Asian history and geography: the great distances and harsh terrain have often made it difficult to execute the sort of open-field clashes allowed by the flat terrain and relatively compact size of Europe. A very different strategic tradition arose in Asia. The bow and arrow were metaphors for an Eastern way of war. By its nature, the arrow is an indirect weapon. Fired from a distance of hundreds of yards, it does not necessitate immediate physical contact with the enemy. Thus, it can be fired from hidden positions. When fired from behind a ridge, the barrage seems to come out of nowhere, taking the enemy by surprise. The tradition of this kind of fighting is captured in the classical strategic writings of the East. The 2,000 years' worth of Chinese writings on war constitutes the most subtle writings on the subject in any language. Not until Clausewitz, did the West produce a strategic theorist to match the sophistication of Sun-tzu, whose Art of War was written 2,300 years earlier. In Sun-tzu and other Chinese writings, the highest achievement of arms is to defeat an adversary without fighting. He wrote: "To win one hundred victories in one hundred battles is not the acme of skill. To subdue the enemy without fighting is the supreme excellence." Actual combat is just one among many means towards the goal of subduing an adversary. War contains too many surprises to be a first resort. It can lead to ruinous losses, as has been seen time and again. It can have the unwanted effect of inspiring heroic efforts in an enemy, as the United States learned in Vietnam, and as the Japanese found out after Pearl Harbor. Aware of the uncertainties of a military campaign, Sun-tzu advocated war only after the most thorough preparations. Even then it should be quick and clean. Ideally, the army is just an instrument to deal the final blow to an enemy already weakened by isolation, poor morale, and disunity. Ever since Sun-tzu, the Chinese have been seen as masters of subtlety who take measured actions to manipulate an adversary without his knowledge. The dividing line between war and peace can be obscure. Low-level violence often is the backdrop to a larger strategic campaign. The unwitting victim, focused on the day-to-day events, never realizes what's happening to him until it's too late. History holds many examples. The Viet Cong lured French and U.S. infantry deep into the jungle, weakening their morale over several years. The mobile army of the United States was designed to fight on the plains of Europe, where it could quickly move unhindered from one spot to the next. The jungle did more than make quick movement impossible; broken down into smaller units and scattered in isolated bases, US forces were deprived of the feeling of support and protection that ordinarily comes from being part of a big army. The isolation of U.S. troops in Vietnam was not just a logistical detail, something that could be overcome by, for instance, bringing in reinforcements by helicopter. In a big army reinforcements are readily available. It was Napoleon who realized the extraordinary effects on morale that come from being part of a larger formation. Just the knowledge of it lowers the soldier's fear and increases his aggressiveness. In the jungle and on isolated bases, this feeling was removed. The thick vegetation slowed down the reinforcements and made it difficult to find stranded units. Soldiers felt they were on their own. More important, by altering the way the war was fought, the Viet Cong stripped the United States of its belief in the inevitability of victory, as it had done to the French before them. Morale was high when these armies first went to Vietnam. Only after many years of debilitating and demoralizing fighting did Hanoi launch its decisive attacks, at Dienbienphu in 1954 and against Saigon in 1975. It should be recalled that in the final push to victory the North Vietnamese abandoned their jungle guerrilla tactics completely, committing their entire army of twenty divisions to pushing the South Vietnamese into collapse. This final battle, with the enemy's army all in one place, was the one that the United States had desperately wanted to fight in 1965. When it did come out into the open in 1975, Washington had already withdrawn its forces and there was no possibility of re-intervention. The Japanese early in World War II used a modern form of the indirect attack, one that relied on stealth and surprise for its effect. At Pearl Harbor, in the Philippines, and in Southeast Asia, stealth and surprise were attained by sailing under radio silence so that the navy's movements could not be tracked. Moving troops aboard ships into Southeast Asia made it appear that the Japanese army was also "invisible." Attacks against Hawaii and Singapore seemed, to the American and British defenders, to come from nowhere. In Indonesia and the Philippines the Japanese attack was even faster than the German blitz against France in the West. The greatest military surprises in American history have all been in Asia. Surely there is something going on here beyond the purely technical difficulties of detecting enemy movements. Pearl Harbor, the Chinese intervention in Korea, and the Tet offensive in Vietnam all came out of a tradition of surprise and stealth. U.S. technical intelligence – the location of enemy units and their movements was greatly improved after each surprise, but with no noticeable improvement in the American ability to foresee or prepare what would happen next. There is a cultural divide here, not just a technical one. Even when it was possible to track an army with intelligence satellites, as when Iraq invaded Kuwait or when Syria and Egypt attacked Israel, surprise was achieved. The United States was stunned by Iraq's attack on Kuwait even though it had satellite pictures of Iraqi troops massing at the border. The exception that proves the point that cultural differences obscure the West's understanding of Asian behavior was the Soviet Union's 1979 invasion of Afghanistan. This was fully anticipated and understood in advance. There was no surprise because the United States understood Moscow's worldview and thinking. It could anticipate Soviet action almost as well as the Soviets themselves, because the Soviet Union was really a Western country. The difference between the Eastern and the Western way of war is striking. The West's great strategic writer, Clausewitz, linked war to politics, as did Sun-tzu. Both were opponents of militarism, of turning war over to the generals. But there all similarity ends. Clausewitz wrote that the way to achieve a larger political purpose is through destruction of the enemy's army. After observing Napoleon conquer Europe by smashing enemy armies to bits, Clausewitz made his famous remark in On War (1932) that combat is the continuation of politics by violent means. Morale and unity are important, but they should be harnessed for the ultimate battle. If the Eastern way of war is embodied by the stealthy archer, the metaphorical Western counterpart is the swordsman charging forward, seeking a decisive showdown, eager to administer the blow that will obliterate the enemy once and for all. In this view, war proceeds along a fixed course and occupies a finite extent of time, like a play in three acts with a beginning, a middle, and an end. The end, the final scene, decides the issue for good. When things don't work out quite this way, the Western military mind feels tremendous frustration. Sun-tzu's great disciples, Mao Zedong and Ho Chi Minh, are respected in Asia for their clever use of indirection and deception to achieve an advantage over stronger adversaries. But in the West their approach is seen as underhanded and devious. To the American strategic mind, the Viet Cong guerrilla did not fight fairly. He should have come out into the open and fought like a man, instead of hiding in the jungle and sneaking around like a cat in the night. According to the author, the main reason for the U.S. losing the Vietnam war was
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions