1. Only ......... children like thrillers.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which medical system follows the maxim "Like cures like" ?....
QA->An Indian actor who is best-known for his author-backed roles in films like Aakrosh (1980), Arohan (1982) and television films like Sadgati (1981) and Tamas (1987), passed away on January 6, 2017?....
QA->"Take care to get what you like, or you will be forced to like what you get"....
QA->Whose pen name is known as ‘Just as I would not like to be a slave, so I would not like to be a master’ ?....
QA->Antonym of " like " :....
MCQ-> These questions are based on the following information:Children in a class play only one or two or all the three games badminton, football and cricket. 5 children play only cricket, 8 children play only football and 7 children play only badminton. 3 children play only two games badminton and football, 4 children play only two games. Cricket and football and another 4 children play only two games badminton and cricket. 2 children play all the three games.In all how many children play football ?
 ....
MCQ-> Studies of the factors governing reading development in young children have achieved a remarkable degree of consensus over the past two decades. The consensus concerns the causal role of ‘phonological skills in young children’s reading progress. Children who have good phonological skills, or good ‘phonological awareness’ become good readers and good spellers. Children with poor phonological skills progress more poorly. In particular, those who have a specific phonological deficit are likely to be classified as dyslexic by the time that they are 9 or 10 years old.Phonological skills in young children can be measured at a number of different levels. The term phonological awareness is a global one, and refers to a deficit in recognising smaller units of sound within spoken words. Development work has shown that this deficit can be at the level of syllables, of onsets and rimes, or phonemes. For example, a 4-year old child might have difficulty in recognising that a word like valentine has three syllables, suggesting a lack of syllabic awareness. A five-year-old might have difficulty in recognizing that the odd work out in the set of words fan, cat, hat, mat is fan. This task requires an awareness of the sub-syllabic units of the onset and the rime. The onset corresponds to any initial consonants in a syllable words, and the rime corresponds to the vowel and to any following consonants. Rimes correspond to rhyme in single-syllable words, and so the rime in fan differs from the rime in cat, hat and mat. In longer words, rime and rhyme may differ. The onsets in val:en:tine are /v/ and /t/, and the rimes correspond to the selling patterns ‘al’, ‘en’ and’ ine’.A six-year-old might have difficulty in recognising that plea and pray begin with the same initial sound. This is a phonemic judgement. Although the initial phoneme /p/ is shared between the two words, in plea it is part of the onset ‘pl’ and in pray it is part if the onset ‘pr’. Until children can segment the onset (or the rime), such phonemic judgements are difficult for them to make. In fact, a recent survey of different developmental studies has shown that the different levels of phonological awareness appear to emerge sequentially. The awareness of syllables, onsets, and rimes appears to merge at around the ages of 3 and 4, long before most children go to school. The awareness of phonemes, on the other hand, usually emerges at around the age of 5 or 6, when children have been taught to read for about a year. An awareness of onsets and rimes thus appears to be a precursor of reading, whereas an awareness of phonemes at every serial position in a word only appears to develop as reading is taught. The onset-rime and phonemic levels of phonological structure, however, are not distinct. Many onsets in English are single phonemes, and so are some rimes (e.g. sea, go, zoo).The early availability of onsets and rimes is supported by studies that have compared the development of phonological awareness of onsets, rimes, and phonemes in the same subjects using the same phonological awareness tasks. For example, a study by Treiman and Zudowski used a same/different judgement task based on the beginning or the end sounds of words. In the beginning sound task, the words either began with the same onset, as in plea and plank, or shared only the initial phoneme, as in plea and pray. In the end-sound task, the words either shared the entire rime, as in spit and wit, or shared only the final phoneme, as in rat and wit. Treiman and Zudowski showed that four- and five-year-old children found the onset-rime version of the same/different task significantly easier than the version based on phonemes. Only the sixyear- olds, who had been learning to read for about a year, were able to perform both versions of the tasks with an equal level of success.From the following statements, pick out the true statement according to the passage.
 ....
MCQ-> Consider the following information and answer questions based on it. Among 60 students. 12 like only algebra, 13 like only geometry, 10 like only trigonometry, 5 like both algebra and trigonometry, 8 like only physics, 5 like both physics and geometry and the remaining like both algebra and physics.The number of students who like physics but not geometry is
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Read the given passage carefully and select the best answer to each question out of the four given alternatives. Computers have become indispensable in the modern times. From information to having fun, you can possibly do everything with the help of this amazing machine. For the modern day child, computers are vital and the amount of time that they devote on them has constantly been on the rise. One of the most popular things with children when it comes to the computer are video games or the computer games. From puzzles to racing, action to sports, strategy to adventure, computer games are possibly the biggest addiction with most children. With companies such as Sony and Microsoft going all out to promote Xbox and Playstation to children worldwide, the allure to these games has only got better. These video games not only help in making child's brain sharper through mental stimulation but it also helps relieve them of anxiety or pain. In some cases, games have proved to aid in dyslexic kids reading better. Since adults also love playing games, it can be a time of bonding between adults and children, increasing the amount of time spent together especially when time spent by parents and children is very less nowadays. On the other hand, the addiction to these computer games can severely harm the child. Since children keep on playing for long hours, it can lead to eye damage. The impact of excessive visual medium is evident as a large number of children these days start wearing spectacles from an early age. Long hours of playing computer games can also result in headaches and dizziness.One of the most popular things with children when it comes to the computer?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions