1. Consider the following statements about data structures in Pascal Arrays and files are types of data structures.List structure is not a data structure in Pascal.Each element of a binary tree is called a node of the tree. Which of the above are statements correct?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->In a Program Graph, ‘X’ is an if-then-else node. If the number of paths from start node to X is ‘p’ number of paths from if part to end node is ‘q’ and from else part to end node is ’r’, the total number of possible paths through X is :....
QA->Consider a Program Graph (PG) with statements as nodes and control as edges. Which of the following is not true for any PG?....
QA->The minimum number of fields with each node of double linked list is :....
QA->…………….means the annual financial statements and other statements prescribed under Rule 65 of Kerala Panchayat Raj (Accounts) Rules, 2011?....
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
MCQ->Consider the following statements about data structures in Pascal Arrays and files are types of data structures.List structure is not a data structure in Pascal.Each element of a binary tree is called a node of the tree. Which of the above are statements correct?....
MCQ-> Read the passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Long time ago, in a forest, there lived a young antelope. He was fond of the fruits of a particular tree. In a village bordering the forest, there lived a hunter who captured and killed antelopes for various reasons. He used to set traps for animals under fruit­bearing trees. When the animal came to eat the fruit, it would be caught in the trap. He would then take it away and kill it for its meat. One day, while visiting the forest in search of game, the hunter happened to see the antelope under its favourite tree, eating fruit. He was delighted. ‘What a big, plump antelope!’ he thought. ‘I must catch him. I will get a lot of money from selling his meat.’ Thereafter, for many days, the hunter kept track of the antelope’s movements. He realised that the antelope was remarkably vigilant and fleet footed animal that it would be virtually impossible for him to track him down. However, he had a weakness for that particular tree. The crafty concluded that he could use this weakness to capture him. Early one morning, the hunter entered the forest with some logs of wood. He climbed the tree and put up a machan (platform used by hunters) on one of its branches by tying the logs together. Having set his trap at the foot of the tree, he then took up position on the machan and waited for the antelope. He strewed a lot of iy ,ovef mrui bts eo rn2thoeig6round beneath the 11.004.3, tree to conceal the trap and lure the antelope. Soon, the antelope came strolling along. He was very hungry and was eagerly looking forward to his usual breakfast of delicious ripe fruits. On the tree­top, the hunter, having sighted him, sat with bated breath, willing him to come closer and step into his trap. However, the antelope was no fool. As he neared the tree he stopped short. The number of fruits lying under the tree seemed considerably more than usual. Surely, something was amiss, decided the antelope. He paused just out of reach of the tree and carefully began examining the ground. Now, he saw what distinctly looked like a human footprint. Without going closer, he looked suspiciously at the tree. The hunter was well hidden in its thick foliage, nevertheless the antelope, on close scrutiny, was now sure that his suspicions had not been unfounded. He could see a corner of the machan peeping out of the leaves. Meanwhile the hunter was getting desperate. Suddenly, he had a brainwave. Let me try throwing some fruit at him,’ he thought. So the hunter plucked some choice fruits and hurled them in the direction of the antelope. Alas, instead of luring him closer, it only confirmed his fears! Raising his voice, he spoke in the direction of the tree —”Listen, my dear tree, until now you have always dropped your fruits on the earth. Today, you have started throwing them at me! This is the most unlikely action of yours and I’m not sure I like the change! Since you have changed your habits, I too will change mine. I will get my fruits from a different tree from now on­one that still acts like a tree!’ The hunter realised that the antelope had outsmarted him with his cleverness. Parting the leaves to reveal himself, he I grabbed his javelin and flung it wildly at the antelope. But the clever antelope was well prepared for any such action on his part. Giving a saucy chuckle, he leapt nimbly out of the harm’s way.As mentioned in the story, which of the following can be said about the hunter ?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ->Which of the following statements are correct about arrays used in C#.NET? Arrays can be rectangular or jagged. Rectangular arrays have similar rows stored in adjacent memory locations. Jagged arrays do not have an access to the methods of System.Array Class. Rectangular arrays do not have an access to the methods of System.Array Class. Jagged arrays have dissimilar rows stored in non-adjacent memory locations.....
MCQ->What will be the output of the program in 16-bit platform (under DOS)? #include<stdio.h> int main() { struct node { int data; struct node link; }; struct node p, q; p = (struct node ) malloc(sizeof(struct node)); q = (struct node ) malloc(sizeof(struct node)); printf("%d, %d\n", sizeof(p), sizeof(q)); return 0; }....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions