1. Which device would best aid in shorted track detection?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which is the correct device for the detection of thermal radiation?....
QA->Coach of triple Olympic and World Championship gold medalist Usain Bolt and president of the Racers Track Club, who has resigned after 22 years as head of the Jamaican national track and field team?....
QA->Which kind of software would you most likely use to keep track of a billing account:....
QA->Whose pen name is known as ‘Just as I would not like to be a slave, so I would not like to be a master’ ?....
QA->For which is the northern blot technique used for the detection?....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases are printed in bold to help you to locate them while answering some of the questions. The outside world has pat answers concerning extremely impoverished countries, especially those in Africa. Everything comes back, again and again, to corruption and misrule. Western officials argue that Africa simply needs to behave itself better, to allow market forces to operate without interference by corrupt rulers. Ye the critics of African governance have it wrong. Politics simply can't explain Africa's prolonged economic crisis. The claim that Africa's corruption is the basic source of the problem does not withstand serious scrutiny. During the past decade I witnessed how relatively well-governed countries in Africa, such as Ghana, Malawi, Mali and Senegal, failed to prosper, whereas societies in Asia perceived to have extensive corruption, such as Bangladesh, Indonesia and Pakistan, enjoyed rapid economic growth. What is the explanation? Every situation of extreme poverty around the world contains some of its own unique causes, which need to be diagnosed as a doctor would a patient. For example, Africa is burdened with malaria like no other part of the world, simply because it is unlucky in providing the perfect conditions for that disease; high temperatures, plenty of breeding sites and particular species of malaria-transmitting mosquitoes that prefer to bite humans rather than cattle.Another myth is that the developed world already gives plenty of aid to the world's poor. Former U.S. Secretary of the Treasury, Paul O'Neil expressed a common frustration when he remarked about aid for Africa : "We've spent trillions of dollars on these problems and we have damn near nothing to show for it". O'Neil was no foe of foreign aid. Indeed, he wanted to fix the system so that more U.S. aid could be justified. But he was wrong to believe that vast flows of aid to Africa had been squandered. President Bush said in a press conference in April 2004 that as "the greatest power on the face of the earth, we have an obligation to help the spread of freedom. We have an obligation to feed the hungry". Yet how does the U.S. fulfill its obligation? U.S. aid to farmers in poor countries to help them grow more food runs at around $200 million per year, far less than $1 per person per year for the hundreds of millions of people living in subsistence farm households.From the world as a whole, the amount of aid per African per year is really very small, just $30 per sub- Saharan African in 2002. Of that modest amount, almost $5 was actually for consultants from the donor countries, more than $3 was for emergency aid, about $4 went for servicing Africa's debts and $ 5 was for debt-relief operations. The rest, about $12, went to Africa. Since the "money down the drain" argument is heard most frequently in the U.S., it's worth looking at the same calculations for U.S. aid alone. In 2002, the U.S. gave $3 per sub-Saharan African. Taking out the parts for U.S. consultants and technical cooperation, food and other emergency aid, administrative costs and debt relief, the aid per African came to grand total of 6 cents.The U.S. has promised repeatedly over the decades, as a signatory to global agreements like the Monterrey Consensus of 2002, to give a much larger proportion of its annual output, specifically upto 0.7% of GNP, to official development assistance. The U.S. failure to follow through has no political fallout domestically, of course, because not one in a million U.S. citizens even knows of statements like the Monterrey Consensus. But no one should underestimate the salience that it has around the world. Spin as American might about their nation's generosity, the poor countries are fully aware of what the U.S. is not doing.The passage seems to emphasize that the outside world has
 ....
MCQ->Which device would best aid in shorted track detection?....
MCQ-> Read the passage carefully and answer the given questionsThe complexity of modern problems often precludes any one person from fully understanding them. Factors contributing to rising obesity levels, for example, include transportation systems and infrastructure, media, convenience foods, changing social norms, human biology and psychological factors. . . . The multidimensional or layered character of complex problems also undermines the principle of meritocracy: the idea that the ‘best person’ should be hired. There is no best person. When putting together an oncological research team, a biotech company such as Gilead or Genentech would not construct a multiple-choice test and hire the top scorers, or hire people whose resumes score highest according to some performance criteria. Instead, they would seek diversity. They would build a team of people who bring diverse knowledge bases, tools and analytic skills. . . .Believers in a meritocracy might grant that teams ought to be diverse but then argue that meritocratic principles should apply within each category. Thus the team should consist of the ‘best’ mathematicians, the ‘best’ oncologists, and the ‘best’ biostatisticians from within the pool. That position suffers from a similar flaw. Even with a knowledge domain, no test or criteria applied to individuals will produce the best team. Each of these domains possesses such depth and breadth, that no test can exist. Consider the field of neuroscience. Upwards of 50,000 papers were published last year covering various techniques, domains of enquiry and levels of analysis, ranging from molecules and synapses up through networks of neurons. Given that complexity, any attempt to rank a collection of neuroscientists from best to worst, as if they were competitors in the 50-metre butterfly, must fail. What could be true is that given a specific task and the composition of a particular team, one scientist would be more likely to contribute than another. Optimal hiring depends on context. Optimal teams will be diverse.Evidence for this claim can be seen in the way that papers and patents that combine diverse ideas tend to rank as high-impact. It can also be found in the structure of the so-called random decision forest, a state-of-the-art machine-learning algorithm. Random forests consist of ensembles of decision trees. If classifying pictures, each tree makes a vote: is that a picture of a fox or a dog? A weighted majority rules. Random forests can serve many ends. They can identify bank fraud and diseases, recommend ceiling fans and predict online dating behaviour. When building a forest, you do not select the best trees as they tend to make similar classifications. You want diversity. Programmers achieve that diversity by training each tree on different data, a technique known as bagging. They also boost the forest ‘cognitively’ by training trees on the hardest cases - those that the current forest gets wrong. This ensures even more diversity and accurate forests.Yet the fallacy of meritocracy persists. Corporations, non-profits, governments, universities and even preschools test, score and hire the ‘best’. This all but guarantees not creating the best team. Ranking people by common criteria produces homogeneity. . . . That’s not likely to lead to breakthroughs.Which of the following conditions, if true, would invalidate the passage’s main argument?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ->The device that would best aid in open track detection is a(n) ________.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions