1. The Five Laws of Library Science of S.R.Ranganathan was first published in:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who became the first England cricketer to cross the 10,000-run mark in Test cricket, and the youngest overall, beating Sachin Tendulkar"s record set in 2005 by five months at the age of 31 years, five months?....
QA->Which city will host the 98th edition of Indian Science Congress to be held for five days from January 3, 2011?....
QA->Colorado State University chemical and biological engineering professor who was recently awarded a $400,000, five-year National Science Foundation CAREER grant?....
QA->Kerala"s First library....
QA->First library in Kerala....
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the through that follow. Soros, we must note, has never been a champion of free market capitalism. He has followed for nearly all his public life the political ideas of the late Sir Karl Popper who laid out a rather jumbled case for what he dubbed "the open society" in his The Open Society and Its Enemies (1953). Such a society is what we ordinarily call the pragmatic system in which politicians get involved in people's lives but without any heavy theoretical machinery to guide them, simply as the ad hoc parental authorities who are believed to be needed to keep us all on the straight and narrow. Popper was at one time a Marxist socialist but became disillusioned with that idea because he came to believe that systematic ideas do not work in any area of human concern. The Popperian open society Soros promotes is characterized by a very general policy of having no firm principles, not even those needed for it to have some constancy and integrity. This makes the open society a rather wobbly idea, since even what Popper himself regarded as central to all human thinking, critical rationalism, may be undermined by the openness of the open society since its main target is negative avoid dogmatic thinking, and avoid anything that even comes close to a set of unbreachable principles. No, the open society is open to anything at all, at least for experimental purposes. No holds are barred, which, if you think about it, undermines even that very idea and becomes unworkable. Accordingly, in a society Soros regards suited to human community living, the state can manipulate many aspects of human life, including, of course; the economic behavior of individuals and firms. It can control the money supply, impose wage and price controls, dabble in demand or supply-side economics, and do nearly everything a central planning board might —provided it does not settle into any one policy firmly, unbendingly. That is the gist of Soros's Popperian politics. Soros' distrusts capitalism in particular, because of the alleged inadequacy of neoclassical economics, the technical economic underpinnings of capitalist thinking offered up in many university economics departments. He, like many others outside and even inside the economics discipline, fmds the arid reductionism of this social science false to the facts, and rightly so. But the defense of capitalist free markets does not rest on this position. Neo-classical thinking depends in large part on the 18th- and 19th-century belief that human society operates according to laws, not unlike those that govern the physical universe. Most of social science embraced that faith, so economics isn't unusual in its loyalty to classical mechanics. Nor do all economists take the deterministic lawfulness of economic science literally — some understand that the laws begin to operate only once people embark upon economic pursuits. Outside their commercial ventures, people can follow different principles and priorities, even if it is undeniable that most of their endeavors have economic features. Yet, it would be foolish to construe religion or romance or even scientific inquiry as solely explicable by reference to the laws of economics. In his criticism of neo-classical economic science, then, George Soros has a point: the discipline is too dependent on Newtonian physics as the model of science. As a result, the predictions of economists who look at markets as if they were machines need to be taken with a grain of salt. Some — for example the school of Austrian economists — have made exactly that point against the neo-classical. Soros draws a mistaken inference: if one defense of the market is flawed, the market lacks defense. This is wrong. If it is true that from A we can infer B, it does not prove that B can only be inferred from A; C or Z, too, might be a reason for B.As per the paragraph, author believes that
 ....
MCQ->The Five Laws of Library Science of S.R.Ranganathan was first published in:....
MCQ-> Read the following passage and solve the questions based on it. a.Six Indian professors from six different institutions (Jupiter, Mars, Mercury, Neptune, Pluto, Uranus) went to China to attend an international conference on “Sustainability and Innovation in Management: A Global Scenario” and they stayed in six successive rooms on the second floor of a hotel (201 _ 206). b.Each of them has published papers in a number of journals and has donated to a number of institutions last year. c.The professor in room no. 202 has published in twice as many journals as the professor who donated to 8 institutions last year. d.The professor from Uranus and the Professor in room number 206 together published in a total of 40 journals. e.The professor from Jupiter published in 8 journals less than the professor from Pluto but donated to 10 more institutions last year. f.Four times the number of 4 journal publications by the professor in room number 204 is lesser than the number of institutions to which he donated last year. g.The professor in room number 203 published in 12 journals and donated to 8 institutions last year. h.The professor who published in 16 journals donated to 24 institutions last year. i.The professor in room number 205 published in 8 journals and donated to 2 institutions less than the professor from Mercury last year. The Mercury professor is staying in an odd numbered room. j.The Mars professor is staying two rooms ahead of Pluto professor who is staying two rooms ahead of the Mercury professor in ascending order of room numbers. k.The professors from Mercury and Jupiter do not stay in room number 206.In which room is the Mars professor staying?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions