1. Name the first digital computer designed by Howard Alken?

Answer: 'Harvard Mark l

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Name the first digital computer designed by Howard Alken?....
QA->Kalabhavan Digital Studio is a digital post processing studio owned by?....
QA->Which Indian company has been named as the 2016 Digital Innovator of the Year by GE Digital?....
QA->What was discovered in 1922 by Howard Carter?....
QA->What was discovered in 1922 by Howard Carter....
MCQ->Which of the following conditions should be satisfied to call an astable multivibrator circuit using discrete components as a digital circuit? A flip-flop is always a digital circuit. Only when we assign 1 and 0 to the high and low levels of the output, a flip-flop is called a digital circuit. Only if the power, supply voltage is maintained at + 5 V or - 5 V, it is called a digital circuit. Only if it is in IC form, following the technology of IC manufacture, it is called a digital circuit.Select the correct answer from the codes given below:...
MCQ-> Read the following passage carefully and answer these question. Certain words/phrase have been printed in bold to help you locate them while answering some of the question.Over the last three centuries, the world economy has evolved from a predominantly agriculture-based system to a digital economic system. The earlier economies were mainly agrarian. In this era, capital did play a role, as did technological innovations such as the plough, the steamboat or the train. But land and labour were more critical.With the industrial revolution, the global economy was primarily driven by the ability to produce goods for the mass market. This led to the industrial economy where capital and labour were the most important drivers. In the service economy, the wealth created by services exceeded the wealth created through manufacturing. Here, the ability of the service provider to establish a sound business gave him access to additional capital. This evolved into a global economy where goods and services were traded across international borders, with little restriction. ln this period, capital started flowing across border on all large scale for the first time.The last five years have seen the advent of the digital economy where technology is becoming the driving force. With information being the driver of value and wealth creation, information logy is becoming the key to success in a growing number of industries. In the digital economy, the power of innovation and ideas gained the upper hand over direct access to capital.The Indian economy is in a unique in terms of its economic evaluation. While manufacturing and service industries in India cannot freely access capital, the new breed of IT:- based industries have access to venture capital and private equity. The country's potential in this emerging sector has opened the doors to capital inflows that are still not available to traditional industries.There are two key trends which will boost the democratization of capital, either directly as funding sources or indirectly.More effective capital market routes---especially for information - based and software companies.This is already happening rapidly. A market that was supposed to be stagnating with no public offering from the manufacturing sector in the first quarter of the fiscal year may see as many see as many as 20-25 new software issues this year. Numerous internet and e-commerce companies are tapping funds through the capital market. For the financial intermediaries as well as for the investing public, dot com or 'info' initial offerings are fast becoming attractive to investment alternatives to traditional manufacturing or financial sector offers.With more effective capital markets, for high potential IT stocks, 'critical mass', which in the industrial economy' was primary in ensuring a company's ability to raise capital, will cases to matter. This underlines the manner in which a burgeoning digital economy has led to a redeployment of capital from a concentrated segment to the smaller knowledge entrepreneur.A greater number of venture capitalists actively seeking to fund budding knowledge entrepreneurs. Along with the rise in Net entrepreneurs one has seen the emergence of a new breed of venture capitalists who recognize the potential that resides in these ideas. The emergence and strengthening of the virtual economy necessitates sources of funds at the' ideation' stage where business plans may still be at the in fancy stage and potential not clearly identified.This need is being fulfilled by the incubator funds or the angle investors who hand-hold internet startups and other info tech ventures till the stage at which they can attract bigger investors. Instead of looking at high risk but big ventures, this genre of venture capitalists are looking at investments in companies which have the potential of excellent valuations in the future on the strength of their ideas.which as the following has been related as most crucial in agro-based economy ? 1.Capital steamboat and trains. 2.Technological innovations like plough,etc. 3.Labour and land....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ...
MCQ->Pick out thể one word for - a secret arrangement...
MCQ-> In the table below is the listing of players, seeded from highest (#1) to lowest (#32), who are due to play in an Association of Tennis Players (ATP) tournament for women. This tournament has four knockout rounds before the final, i.e., first round, second round, quarterfinals, and semi-finals. In the first round, the highest seeded player plays the lowest seeded player (seed # 32) which is designated match No. 1 of first round; the 2nd seeded player plays the 31st seeded player which is designated match No. 2 of the first round, and so on. Thus, for instance, match No. 16 of first round is to be played between 16th seeded player and the 17th seeded player. In the second round, the winner of match No. 1 of first round plays the winner of match No. 16 of first round and is designated match No. 1 of second round. Similarly, the winner of match No. 2 of first round plays the winner of match No. 15 of first round, and is designated match No. 2 of second round. Thus, for instance, match No. 8 of the second round is to be played between the winner of match No. 8 of first round and the winner of match No. 9 of first round. The same pattern is followed for later rounds as well.If there are no upsets (a lower seeded player beating a higher seeded player) in the first round, and only match Nos. 6, 7, and 8 of the second round result in upsets, then who would meet Lindsay Davenport in quarter finals, in case Davenport reaches quarter finals?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions