1. Who became the first ever batsman in the history of T20 cricket to accomplish the double distinction of hitting 600 or more fours and 600 or more sixes?

Answer: Chris Gayle.

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who became the first ever batsman in the history of T20 cricket to accomplish the double distinction of hitting 600 or more fours and 600 or more sixes?....
QA->Which cricketer has created cricket history by hitting most number of sixes (16 sixes) in an ODI innings?....
QA->Who became the first ever player to complete 10,000 runs in T20 cricket?....
QA->Who became the first batsman to score a double century in the ICC World Cup Cricket?....
QA->Who becomes only the third batsman in the history of one-day cricket to score a double hundred?....
MCQ-> Choose the best answer for each question.The production of histories of India has become very frequent in recent years and may well call for some explanation. Why so many and why this one in particular? The reason is a two-fold one: changes in the Indian scene requiring a re-interpretation of the facts and changes in attitudes of historians about the essential elements of Indian history. These two considerations are in addition to the normal fact of fresh information, whether in the form of archeological discoveries throwing fresh light on an obscure period or culture, or the revelations caused by the opening of archives or the release of private papers. The changes in the Indian scene are too obvious to need emphasis. Only two generations ago British rule seemed to most Indian as well as British observers likely to extend into an indefinite future; now there is a teenage generation which knows nothing of it. Changes in the attitudes of historians have occurred everywhere, changes in attitudes to the content of the subject as well as to particular countries, but in India there have been some special features. Prior to the British, Indian historiographers were mostly Muslims, who relied, as in the case of Sayyid Ghulam Hussain, on their own recollection of events and on information from friends and men of affairs. Only a few like Abu’l Fazl had access to official papers. These were personal narratives of events, varying in value with the nature of the writer. The early British writers were officials. In the 18th century they were concerned with some aspect of Company policy, or like Robert Orme in his Military Transactions gave a straight narrative in what was essentially a continuation of the Muslim tradition. In the early 119th century the writers were still, with two notable exceptions, officials, but they were now engaged in chronicling, in varying moods of zest, pride, and awe, the rise of the British power in India to supremacy. The two exceptions were James Mill, with his critical attitude to the Company and John Marchman, the Baptist missionary. But they, like the officials, were anglo-centric in their attitude, so that the history of modern India in their hands came to be the history of the rise of the British in India.The official school dominated the writing of Indian history until we get the first professional historian’s approach. Ramsay Muir and P. E. Roberts in England and H. H. Dodwell in India. Then Indian historians trained in the English school joined in, of whom the most distinguished was Sir Jadunath Sarkar and the other notable writers: Surendranath Sen, Dr Radhakumud Mukherji, and Professor Nilakanta Sastri. They, it may be said, restored India to Indian history, but their bias was mainly political. Finally have come the nationalists who range from those who can find nothing good or true in the British to sophisticated historical philosophers like K. M. Panikker.Along the types of historians with their varying bias have gone changes in the attitude to the content of Indian history. Here Indian historians have been influenced both by their local situation and by changes of thought elsewhere. It is this field that this work can claim some attention since it seeks to break new ground, or perhaps to deepen a freshly turned furrow in the field of Indian history. The early official historians were content with the glamour and drama of political history from Plassey to the Mutiny, from Dupleix to the Sikhs. But when the raj was settled down, glamour departed from politics, and they turned to the less glorious but more solid ground of administration. Not how India was conquered but how it was governed was the theme of this school of historians. It found its archpriest in H. H. Dodwell, its priestess in Dame Lilian Penson, and its chief shrine in the Volume VI of the Cambridge History of India. Meanwhile, in Britain other currents were moving, which led historical study into the economic and social fields. R. C. Dutt entered the first of these currents with his Economic History of India to be followed more recently by the whole group of Indian economic historians. W. E. Moreland extended these studies to the Mughal Period. Social history is now being increasingly studied and there is also of course a school of nationalist historians who see modern Indian history in terms of the rise and the fulfillment of the national movement.All these approaches have value, but all share in the quality of being compartmental. It is not enough to remove political history from its pedestal of being the only kind of history worth having if it is merely to put other types of history in its place. Too exclusive an attention to economic, social, or administrative history can be as sterile and misleading as too much concentration on politics. A whole subject needs a whole treatment for understanding. A historian must dissect his subject into its elements and then fuse them together again into an integrated whole. The true history of a country must contain all the features just cited but must present them as parts of a single consistent theme.Which of the following may be the closest in meaning to the statement ‘restored India to Indian history’?
 ...
MCQ->What will be the output of the following program? #include<iostream.h> double BixFunction(double, double, double = 0, double = 0, double = 0); int main() { double d = 2.3; cout<< BixFunction(d, 7) << " "; cout<< BixFunction(d, 7, 6) << endl; return 0; } double BixFunction(double x, double p, double q, double r, double s) { return p +(q +(r + s x) x) x; }...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.The difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and palaeontologists. To varying degrees each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behaviour. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made2 1 inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 Could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans. How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance on human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance.The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispaniola, New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents. Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulae, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities.Why do islands with considerable degree of isolation provide valuable insights into human history?
 ...
MCQ-> Read the following passage carefully and answer the questions given below. Certain words/phrases have been printed in bold to help you locate them.Management is a set of processes that can keep a complicated system of people and technology running smoothly. The most important aspects of management include planning, budgeting, organising, staffing, controlling, and problem-solving. Leadership is a set of processes that creates organizations in the first place or adapts them to significantly changing circumstances. Leadership defines what the future should look like, aligns people with that vision, and inspires them to make it happen despite the obstacles. This distinction is absolutely crucial for our purposes here: Successful transformation is 70 to 90 per cent leadership and only 10 to 30 per cent management. Yet for historical reasons, many organizations today don't have much leadership. And almost everyone thinks about the problems here as one of managing For most of this century, as we created thousands and thousands of large organizations for the first time in human history, we didn't have enough good managers to keep all those bureaucracies functioning. So many companies and universities developed management programmes, and hundreds and thousands of people were encouraged to learn management on the job. And they did. But, people were taught little about leadership. To some degree, management was emphasized because it's easier to teach than leadership. But even more so, management was the main item on the twentieth-century agenda because that's what was needed. For every entrepreneur or business builder who was a leader, we needed hundreds of managers to run their ever growing enterprises.Unfortunately for us today, this emphasis on management has often been institutionalized in corporate cultures that discourage employees from learning how to lead. Ironically, past success is usually the key ingredient in producing this outcome. The syndrome, as I have observed it on many occasions, goes like this: success creates some degree of market dominance, which in turn produces much growth. After a while keeping the ever larger organization under control becomes the primary challenge. So attention turns inward, and managerial competencies are nurtured. With a strong emphasis on management but not on leadership, bureaucracy and an inward focus take over. But with continued success, the result mostly of market dominance, the problem often goes unaddressed and an unhealthy arrogance begins to evolve. All of these characteristics then make any transformation effort much more difficult.Arrogant managers can over-evaluate their current performance and competitive position, listen poorly, and learn slowly. Inwardly focused employees can have difficulty seeing the very forces that present threats and opportunities. Bureaucratic cultures can smother those who want to respond to shifting conditions. And the lack of leadership leaves no force inside these organisations to break out of the morass.Why, according to the author, is a distinction between management and leadership crucial?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions