1. How many isotopes of Hydrogen element are there?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 02.22 am
    There are 3 isotopes of Hydrogen element : hydrogen, deuterium, and tritium.  => Ans - (B)
Show Similar Question And Answers
QA->Isotopes of an element contains the same number of :....
QA->Isotopes of an element contain the same number of:....
QA->A hydrogen atom is paramagnetic. What is a hydrogen molecule?....
QA->The isotopes of chlorine with mass number 35 and 37 exist in which ratio?....
QA->HOW MANY PROTON IN THE NUCLEUS OF A HYDROGEN ATOM....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ->How many isotopes of Hydrogen element are there?....
MCQ-> Crinoline and croquet are out. As yet, no political activists have thrown themselves in front of the royal horse on Derby Day. Even so, some historians can spot the parallels. It is a time of rapid technological change. It is a period when the dominance of the world’s superpower is coming under threat. It is an epoch when prosperity masks underlying economic strain. And, crucially, it is a time when policy-makers are confident that all is for the best in the best of all possible worlds. Welcome to the Edwardian Summer of the second age of globalisation. Spare a moment to take stock of what’s been happening in the past few months. Let’s start with the oil price, which has rocketed to more than $65 a barrel, more than double its level 18 months ago. The accepted wisdom is that we shouldn’t worry our little heads about that, because the incentives are there for business to build new production and refining capacity, which will effortlessly bring demand and supply back into balance and bring crude prices back to $25 a barrel. As Tommy Cooper used to say, ‘just like that’. Then there is the result of the French referendum on the European Constitution, seen as thick-headed luddites railing vainly against the modern world. What the French needed to realise, the argument went, was that there was no alternative to the reforms that would make the country more flexible, more competitive, more dynamic. Just the sort of reforms that allowed Gate Gourmet to sack hundreds of its staff at Heathrow after the sort of ultimatum that used to be handed out by Victorian mill owners. An alternative way of looking at the French “non” is that our neighbours translate “flexibility” as “you’re fired”. Finally, take a squint at the United States. Just like Britain a century ago, a period of unquestioned superiority is drawing to a close. China is still a long way from matching America’s wealth, but it is growing at a stupendous rate and economic strength brings geo-political clout. Already, there is evidence of a new scramble for Africa as Washington and Beijing compete for oil stocks. Moreover, beneath the surface of the US economy, all is not well. Growth looks healthy enough, but the competition from China and elsewhere has meant the world’s biggest economy now imports far more than it exports. The US is living beyond its means, but in this time of studied complacency a current account deficit worth 6 percent of gross domestic product is seen as a sign of strength, not weakness. In this new Edwardian summer, comfort is taken from the fact that dearer oil has not had the savage inflationary consequences of 1973-74, when a fourfold increase in the cost of crude brought an abrupt end to a postwar boom that had gone on uninterrupted for a quarter of a century. True, the cost of living has been affected by higher transport costs, but we are talking of inflation at b)3 per cent and not 27 per cent. Yet the idea that higher oil prices are of little consequence is fanciful. If people are paying more to fill up their cars it leaves them with less to spend on everything else, but there is a reluctance to consume less. In the 1970s unions were strong and able to negotiate large, compensatory pay deals that served to intensify inflationary pressure. In 2005, that avenue is pretty much closed off, but the abolition of all the controls on credit that existed in the 1970s means that households are invited to borrow more rather than consume less. The knock-on effects of higher oil prices are thus felt in different ways – through high levels of indebtedness, in inflated asset prices, and in balance of payments deficits.There are those who point out, rightly, that modern industrial capitalism has proved mightily resilient these past 250 years, and that a sign of the enduring strength of the system has been the way it apparently shrugged off everything – a stock market crash, 9/11, rising oil prices – that have been thrown at it in the half decade since the millennium. Even so, there are at least three reasons for concern. First, we have been here before. In terms of political economy, the first era of globalisation mirrored our own. There was a belief in unfettered capital flows, in free trade, and in the power of the market. It was a time of massive income inequality and unprecedented migration. Eventually, though, there was a backlash, manifested in a struggle between free traders and protectionists, and in rising labour militancy. Second, the world is traditionally at its most fragile at times when the global balance of power is in flux. By the end of the nineteenth century, Britain’s role as the hegemonic power was being challenged by the rise of the United States, Germany, and Japan while the Ottoman and Hapsburg empires were clearly in rapid decline. Looking ahead from 2005, it is clear that over the next two or three decades, both China and India – which together account for half the world’s population – will flex their muscles. Finally, there is the question of what rising oil prices tell us. The emergence of China and India means global demand for crude is likely to remain high at a time when experts say production is about to top out. If supply constraints start to bite, any declines in the price are likely to be short-term cyclical affairs punctuating a long upward trend.By the expression ‘Edwardian Summer’, the author refers to a period in which there is
 ....
MCQ-> Have you ever come across a painting, by Picasso, Mondrian, Miro, or any other modern abstract painter of this century, and found yourself engulfed in a brightly coloured canvas which your senses cannot interpret? Many people would tend to denounce abstractionism as senseless trash. These people are disoriented by Miro's bright, fanciful creatures and two- dimensional canvases. They click their tongues and shake their heads at Mondrian's grid works, declaring the poor guy played too many scrabble games. They silently shake their heads in sympathy for Picasso, whose gruesome, distorted figures must be a reflection of his mental health. Then, standing in front of a work by Charlie Russell, the famous Western artist, they'll declare it a work of God. People feel more comfortable with something they can relate to and understand immediately without too much thought. This is the case with the work of Charlie Russell. Being able to recognize the elements in his paintings - trees, horses and cowboys - gives people a safety line to their world of "reality". There are some who would disagree when I say abstract art requires more creativity and artistic talent to produce a good piece than does representational art, but there are many weaknesses in their arguments.People who look down on abstract art have several major arguments to support their beliefs. They feel that artists turn abstract because they are not capable of the technical drafting skills that appear in a Russell; therefore, such artists create an art form that anyone is capable of and that is less time consuming, and then parade it as artistic progress. Secondly, they feel that the purpose of art is to create something of beauty in an orderly, logical composition. Russell's compositions are balanced and rational, everything sits calmly on the canvas, leaving the viewer satisfied that he has seen all there is to see. The modern abstractionists, on the other hand, seem to compose their pieces irrationally. For example, upon seeing Picasso's Guernica, a friend of mine asked me, "What's the point?" Finally, many people feel that art should portray the ideal and real. The exactness of detail in Charlie Russell's work is an example of this. He has been called a great historian because his pieces depict the life style, dress, and events of the times. His subject matter is derived from his own experiences on the trail, and reproduced to the smallest detail.I agree in part with many of these arguments, and at one time even endorsed them. But now, I believe differently. Firstly, I object to the argument that abstract artists are not capable of drafting. Many abstract artists, such as Picasso, are excellent draftsmen. As his work matured, Picasso became more abstract in order to increase the expressive quality of his work. Guernica was meant as a protest against the bombing of that city by the Germans. To express the terror and suffering of the victims more vividly, he distorted the figures and presented them in a black and white journalistic manner. If he had used representational images and colour, much of the emotional content would have been lost and the piece would not have caused the demand for justice that it did. Secondly, I do not think that a piece must be logical and aesthetically pleasing to be art. The message it conveys to its viewers is more important. It should reflect the ideals and issues of its time and be true to itself, not just a flowery, glossy surface. For example, through his work, Mondrian was trying to present a system of simplicity, logic, and rational order. As a result, his pieces did end up looking like a scrabble board.Miro created powerful, surrealistic images from his dreams and subconscious. These artists were trying to evoke a response from society through an expressionistic manner. Finally, abstract artists and representational artists maintain different ideas about 'reality'. To the representational artist, reality is what he sees with his eyes. This is the reality he reproduces on canvas. To the abstract artist, reality is what he feels about what his eyes see. This is the reality he interprets on canvas. This can be illustrated by Mondrian's Trees series. You can actually see the progression from the early recognizable, though abstracted, Trees, to his final Explanation, the grid system.A cycle of abstract and representational art began with the first scratchings of prehistoric man. From the abstractions of ancient Egypt to representational, classical Rome, returning to abstractionism in early Christian art and so on up to the present day, the cycle has been going on. But this day and age may witness its death through the camera. With film, there is no need to produce finely detailed, historical records manually; the camera does this for us more efficiently. Maybe, representational art would cease to exist. With abstractionism as the victor of the first battle, may be a different kind of cycle will be touched off. Possibly, some time in the distant future, thousands of years from now, art itself will be physically non-existent. Some artists today believe that once they have planned and constructed a piece in their mind, there is no sense in finishing it with their hands; it has already been done and can never be duplicated.The author argues that many people look down upon abstract art because they feel that:
 ....
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 1We use the word culture quite casually when referring to a variety of thoughts and actions. I would like to begin my attempt to define cultures by a focus on three of its dictionary meanings that I think are significant to our understanding of the general term-culture. We often forget that it's more essential usage is as a verb rather than as a noun, since the noun follows froth the activities involved in the verb. Thus the verb, to culture, means to cultivate. This can include at least three activities: to artificially grow microscopic organisms; to improve and refine the customs, manners and activities of one's life; to give attention to the mind as part of what goes into the making of what we call civilization, or what was thought to be the highest culture. In short, one might argue that culture is the intervention of human effort in refining and redefining that which is natural, but that it gradually takes on other dimensions in the life of the individual, and even more in the interface between the individual and society. When speaking of society, this word also requires defining. Society, it has been said, is what emerges from a network of interactions between people that follow certain agreed upon and perceptible patterns. These arc determined by ideas of status, hierarchy and a sense of community governing the network. They are often, but not invariably, given a direction by those who control the essentials in how a society functions, as for instance, its economic resources, its technology and its value systems. The explanation and justification for who controls these aspects of a society introduces the question of its ideology and often its form. The resulting patterns that can be differentiated from segment to segment of the society are frequently called its cultures. Most early societies register inequalities, The access of their members to wealth and status varies. The idea of equality therefore has many dimensions. All men and women may be said to be equal in the eyes of god, but may at the same time be extremely differentiated in terms of income and social standing, and therefore differentiated in the eyes of men and women. This would not apply to the entire society. There may be times when societies conform to a greater degree of equality, but such times may be temporary. It has been argued that on a pilgrimage, the status of every pilgrim is relatively similar but at the end returns to inequalities. Societies are not static and change their forms and their rules of functioning. Cultures are reflections of these social patterns, so they also change. My attempt in this introduction is to explain how the meaning of a concept such as culture has changed in recent times and has come to include many more facets than it did earlier. What we understand as the markers of culture have gone way beyond what we took them to be a century or two ago. Apart from items of culture, which is the way in which culture as heritage was popularly viewed, there is also the question of the institutions and social codes that determine the pattern of living, and upon which pattern a culture is constructed. Finally, there is the process of socialization into society and culture through education. There is a historical dimension to each of these as culture and history are deeply intertwined. There is also an implicit dialogue between the present and the past reflected in the way in which the readings of the past changed over historical periods. Every. society has its cultures, namely, the patterns of how the people of that society live. In varying degrees this would refer to broad categories that shape life, such as the environment that determines the relationship with the natural world, technology that enables a control over the natural world, political-economy that organizes the larger vision of a society as a community or even as a state, structures of social relations that ensure its networks of functioning, religion that appeals to aspirations and belief, mythology that may get transmuted into literature and philosophy that teases the mind and the imagination with questions. The process of growth is never static therefore there are mutations and changes within the society. There is communication and interaction with other societies through which cultures evolve and mutate. There is also the emergence of subcultures that sometimes take the form of independent and dominant cultures or amoeba-like breakaway to form new cultures. Although cultures coincide with history and historical change, the consciousness of a category such as culture, in the emphatic sense in which the term is popularly used these days, emerges in the eighteenth century in Europe. The ideal was the culture of elite groups, therefore sometimes a distinction is made between what carne to be called 'high culture' that of the elite, and low culture' that of those regarded as not being of the elite, and sometimes described as 'popular'. Historical records of elite cultures in forms such as texts and monuments for instance, received larger patronage and symbolized the patterns of life of dominant groups. They were and are more readily available as heritage than the objects of the socially lower groups in society whose less durable cultural manifestations often do not survive. This also predisposed people to associate culture as essentially that of the elite.What is the central idea of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions